## Abstract

The fundamental limit to resolution of a perfect lens for off-axis object points is considered. It has been shown previously that resolution decreases with illumination. Here it is shown that the relative decrease in resolution with illumination angle is reduced for lenses of higher numerical aperture. These results are of importance for optical systems that combine high aperture with large field of view, such as lithographic lenses.

© 1998 Optical Society of America

Full Article |

PDF Article
### Equations (7)

Equations on this page are rendered with MathJax. Learn more.

(2)
$$\mathbf{p}=(acos\varphi -dtan\theta )\mathbf{i}+asin\varphi \mathbf{j}-d\mathbf{k},$$
(3)
$$|\mathbf{p}|=\frac{d}{cos\alpha cos\theta}(1-{sin}^{2}\alpha {sin}^{2}\theta -2sin\alpha cos\alpha sin\theta cos\theta cos\varphi {)}^{1/2}.$$
(4)
$$m=\frac{cos\theta cos\varphi -sin\theta cot\alpha}{(1-{sin}^{2}\alpha {sin}^{2}\theta -2sin\alpha cos\alpha sin\theta cos\theta cos\varphi {)}^{1/2}},\hspace{1em}\hspace{1em}\hspace{1em}$$
(5)
$$n=\frac{cos\theta sin\varphi}{(1-{sin}^{2}\alpha {sin}^{2}\theta -2sin\alpha cos\alpha sin\theta cos\theta cos\varphi {)}^{1/2}}.$$
(6)
$${m}_{0}=cos\theta \left[1-{sin}^{2}\theta \left(1-\frac{1}{2}{sin}^{2}\alpha \right)\right],$$
(7)
$${n}_{0}=cos\theta \left[\left.1+\frac{1}{2}{sin}^{2}\theta {sin}^{2}\alpha \right)\right].$$