Abstract

The excitation efficiency of a morphology-dependent resonance (MDR) by an incident beam is defined as the fraction of the beam power channeled into the MDR. The efficiency is calculated for a focused Gaussian beam of arbitrary width incident on either a spherical particle or a cylindrical fiber located at an arbitrary position in the plane of the beam waist. In each case a simple formula for the efficiency is derived by use of the localized approximation for the beam-shape coefficients in the partial-wave expansion of the beam. The physical interpretation of the efficiency formulas is also discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved Gaussian beam-scattering algorithm

James A. Lock
Appl. Opt. 34(3) 559-570 (1995)

Gaussian beam scattering by two parallel nonabsorbing dielectric cylinders: displacement and rotational degrees of freedom

André Gondim Simão, José Paulo Rodrigues Furtado de Mendonça, Luiz Gallisa Guimarães, and Pedro Cláudio Guaranho de Moraes
Appl. Opt. 47(36) 6701-6709 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription