Abstract

Light scattering from circular cylinders (diameter sizes from 0.1λ to 4λ) on a conducting substrate are studied by means of a numerical solution of the electromagnetic problem based on the extended boundary conditions of the extinction theorem. Both the cylinder and the substrate are considered real conductors. The evolution of the scattering patterns and the source functions for several angles of incidence allows it to be compared with that found in previous research on perfect conductors. The study shows that, although some of the features are similar in both cases, important differences exist. We found that, for this geometry, the perfect-conductor assumption for real metals is correct only for light polarized perpendicularly to the plane of incidence (which in turn is assumed to be perpendicular to the cylinder axis). Parallel polarized light is far more sensitive to the optical properties of the surfaces, therefore producing different scattering features.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
    [CrossRef] [PubMed]
  2. D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, 1985), p. 356.
  3. J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21, 1330–1332 (1996).
    [CrossRef] [PubMed]
  4. F. Moreno, J. M. Saiz, P. J. Valle, F. González, “Metallic particle sizing on flat surfaces: application to conducting substrates,” Appl. Phys. Lett. 68, 3087–3089 (1996).
    [CrossRef]
  5. P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681–13890 (1995).
    [CrossRef]
  6. V. A. Kosobukin, “Polarization and resonance effects in optical generation of cylindrical surface polaritons and periodic structures,” Phys. Solid State 35, 457–463 (1993).
  7. A. V. Shegrov, I. V. Novikov, A. A. Maradudin, “Scattering of surface plasmon polaritons by a circularly symmetric surface defect,” Phys. Rev. Lett. 78, 4269–4272 (1997).
    [CrossRef]
  8. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  9. J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
    [CrossRef]
  10. A. A. Maradudin, T. Michel, A. R. McGurn, E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
    [CrossRef]
  11. J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Resonance effects in multiple light scattering from a statistically rough metallic surface,” Phys. Rev. B 45, 8623–8633 (1992).
    [CrossRef]
  12. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.
  13. M. Saillard, D. Maystre, “Scattering from metallic and dielectric rough surfaces,” J. Opt. Soc. Am. A 7, 982–990 (1990).
    [CrossRef]
  14. H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings, Vol. 11 of Springer Tracts on Modern Physics (Springer-Verlag, Berlin, 1988).
  15. P. Dawson, F. de Fornel, J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
    [CrossRef] [PubMed]

1997 (1)

A. V. Shegrov, I. V. Novikov, A. A. Maradudin, “Scattering of surface plasmon polaritons by a circularly symmetric surface defect,” Phys. Rev. Lett. 78, 4269–4272 (1997).
[CrossRef]

1996 (2)

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “Metallic particle sizing on flat surfaces: application to conducting substrates,” Appl. Phys. Lett. 68, 3087–3089 (1996).
[CrossRef]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21, 1330–1332 (1996).
[CrossRef] [PubMed]

1995 (1)

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681–13890 (1995).
[CrossRef]

1994 (2)

P. Dawson, F. de Fornel, J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[CrossRef] [PubMed]

1993 (1)

V. A. Kosobukin, “Polarization and resonance effects in optical generation of cylindrical surface polaritons and periodic structures,” Phys. Solid State 35, 457–463 (1993).

1992 (1)

J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Resonance effects in multiple light scattering from a statistically rough metallic surface,” Phys. Rev. B 45, 8623–8633 (1992).
[CrossRef]

1991 (1)

1990 (2)

M. Saillard, D. Maystre, “Scattering from metallic and dielectric rough surfaces,” J. Opt. Soc. Am. A 7, 982–990 (1990).
[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Barber, P. W.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.

Dawson, P.

P. Dawson, F. de Fornel, J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

de Fornel, F.

P. Dawson, F. de Fornel, J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

González, F.

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “Metallic particle sizing on flat surfaces: application to conducting substrates,” Appl. Phys. Lett. 68, 3087–3089 (1996).
[CrossRef]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21, 1330–1332 (1996).
[CrossRef] [PubMed]

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681–13890 (1995).
[CrossRef]

P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[CrossRef] [PubMed]

Goudonnet, J. P.

P. Dawson, F. de Fornel, J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

Hill, S. C.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.

Hunter, W. R.

D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, 1985), p. 356.

Kosobukin, V. A.

V. A. Kosobukin, “Polarization and resonance effects in optical generation of cylindrical surface polaritons and periodic structures,” Phys. Solid State 35, 457–463 (1993).

Lynch, D. W.

D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, 1985), p. 356.

Maradudin, A. A.

A. V. Shegrov, I. V. Novikov, A. A. Maradudin, “Scattering of surface plasmon polaritons by a circularly symmetric surface defect,” Phys. Rev. Lett. 78, 4269–4272 (1997).
[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Maystre, D.

McGurn, A. R.

A. A. Maradudin, T. Michel, A. R. McGurn, E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Méndez, E. R.

A. A. Maradudin, T. Michel, A. R. McGurn, E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Michel, T.

A. A. Maradudin, T. Michel, A. R. McGurn, E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Moreno, F.

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21, 1330–1332 (1996).
[CrossRef] [PubMed]

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “Metallic particle sizing on flat surfaces: application to conducting substrates,” Appl. Phys. Lett. 68, 3087–3089 (1996).
[CrossRef]

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681–13890 (1995).
[CrossRef]

P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Resonance effects in multiple light scattering from a statistically rough metallic surface,” Phys. Rev. B 45, 8623–8633 (1992).
[CrossRef]

J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
[CrossRef]

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).

Novikov, I. V.

A. V. Shegrov, I. V. Novikov, A. A. Maradudin, “Scattering of surface plasmon polaritons by a circularly symmetric surface defect,” Phys. Rev. Lett. 78, 4269–4272 (1997).
[CrossRef]

Ortiz, E. M.

Raether, H.

H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings, Vol. 11 of Springer Tracts on Modern Physics (Springer-Verlag, Berlin, 1988).

Saillard, M.

Saiz, J. M.

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21, 1330–1332 (1996).
[CrossRef] [PubMed]

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “Metallic particle sizing on flat surfaces: application to conducting substrates,” Appl. Phys. Lett. 68, 3087–3089 (1996).
[CrossRef]

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681–13890 (1995).
[CrossRef]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Resonance effects in multiple light scattering from a statistically rough metallic surface,” Phys. Rev. B 45, 8623–8633 (1992).
[CrossRef]

J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
[CrossRef]

Shegrov, A. V.

A. V. Shegrov, I. V. Novikov, A. A. Maradudin, “Scattering of surface plasmon polaritons by a circularly symmetric surface defect,” Phys. Rev. Lett. 78, 4269–4272 (1997).
[CrossRef]

Valle, P. J.

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “Metallic particle sizing on flat surfaces: application to conducting substrates,” Appl. Phys. Lett. 68, 3087–3089 (1996).
[CrossRef]

J. M. Saiz, P. J. Valle, F. González, E. M. Ortiz, F. Moreno, “Scattering by a metallic cylinder on a substrate: burying effects,” Opt. Lett. 21, 1330–1332 (1996).
[CrossRef] [PubMed]

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681–13890 (1995).
[CrossRef]

P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994).
[CrossRef] [PubMed]

Ann. Phys. (1)

A. A. Maradudin, T. Michel, A. R. McGurn, E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Moreno, J. M. Saiz, P. J. Valle, F. González, “Metallic particle sizing on flat surfaces: application to conducting substrates,” Appl. Phys. Lett. 68, 3087–3089 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Phys. Rev. B (2)

P. J. Valle, F. Moreno, J. M. Saiz, F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681–13890 (1995).
[CrossRef]

J. A. Sánchez-Gil, M. Nieto-Vesperinas, “Resonance effects in multiple light scattering from a statistically rough metallic surface,” Phys. Rev. B 45, 8623–8633 (1992).
[CrossRef]

Phys. Rev. Lett. (2)

A. V. Shegrov, I. V. Novikov, A. A. Maradudin, “Scattering of surface plasmon polaritons by a circularly symmetric surface defect,” Phys. Rev. Lett. 78, 4269–4272 (1997).
[CrossRef]

P. Dawson, F. de Fornel, J. P. Goudonnet, “Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope,” Phys. Rev. Lett. 72, 2927–2930 (1994).
[CrossRef] [PubMed]

Phys. Solid State (1)

V. A. Kosobukin, “Polarization and resonance effects in optical generation of cylindrical surface polaritons and periodic structures,” Phys. Solid State 35, 457–463 (1993).

Other (4)

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.

D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, 1985), p. 356.

H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings, Vol. 11 of Springer Tracts on Modern Physics (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of the scattering problem.

Fig. 2
Fig. 2

Scattering cross sections (semi-logarithmic scale) versus the scattering angle for a cylinder on a flat substrate, both of silver. (=-17.2+1.16i for λ=0.633 µm). From top to bottom, D/λ=0.2, 1, and 2. (a) s incident polarization, (b) p incident polarization.

Fig. 3
Fig. 3

Same as Fig. 2, for perfect conductors.

Fig. 4
Fig. 4

Modulus of the source function: (a) s polarization, (b) p polarization versus the x position (λ units), for a real conductor (silver: =-17.2+1.16i) and for three different incidences.

Fig. 5
Fig. 5

Modulus of the source function versus the x position (λ units) for a perfect conductor and for three different incidences.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A(i)(r)+14πSdSA(s)G0(r,s)nˆ-G0(r, s)A(s)nˆ=A(r)
-14πSdSA(s)G(r,s)nˆ-ηG(r, s)A(s)nˆ=0,
A(s)(r)=14πSdSA(s)G0(r, s)nˆ-G0(r, s)A(s)nˆ.
ksp=±k{(ω)/[(ω)+1]}1/2,

Metrics