Abstract

An enhanced, numerically stable transmittance matrix approach is developed and is applied to the implementation of the rigorous coupled-wave analysis for surface-relief and multilevel gratings. The enhanced approach is shown to produce numerically stable results for excessively deep multilevel surface-relief dielectric gratings. The nature of the numerical instability for the classic transmission matrix approach in the presence of evanescent fields is determined. The finite precision of the numerical representation on digital computers results in insufficient accuracy in numerically representing the elements produced by inverting an ill-conditioned transmission matrix. These inaccuracies will result in numerical instability in the calculations for successive field matching between the layers. The new technique that we present anticipates and preempts these potential numerical problems. In addition to the full-solution approach whereby all the reflected and the transmitted amplitudes are calculated, a simpler, more efficient formulation is proposed for cases in which only the reflected amplitudes (or the transmitted amplitudes) are required. Incorporating this enhanced approach into the implementation of the rigorous coupled-wave analysis, we obtain numerically stable and convergent results for excessively deep (50 wavelengths), 16-level, asymmetric binary gratings. Calculated results are presented for both TE and TM polarization and for conical diffraction.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription