J. M. Perrin and J. P. Sivan, “Light scattering by dust grains: effects of the state of the surface on the validity of the discrete dipole approximation,” C. R. Acad. Sci. Paris Ser. II 316, 47–53 (1993).

B. T. Draine and J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).

[Crossref]

P. J. Flatau, K. A. Fuller, and D. W. Mackowski, “Scattering by two spheres in contact: comparisons between discrete dipole approximation and modal analysis,” Appl. Opt. 32, 3302–3305 (1993).

[Crossref]
[PubMed]

F. Rouleau and P. G. Martin, “A new method to calculate the extinction properties of irregularly shaped particles,” Astrophys. J. 414, 803–814 (1993).

[Crossref]

P. J. Flatau, T. Schneider, and F. Evans, ccg-pak—fortran. Conjugate gradient package for solving complex matrix equations (1993).Available from pflatau@ucsd.edu.

W. C. Chew and C.-C. Lu, “NEPAL—an algorithm for solving the volume integral equation,” Microwave Opt. Tech. Lett. 6, 185–188 (1993).

[Crossref]

J. C. Ku, “Comparisons of coupled-dipole solutions and dipole refractive indices for light scattering and absorption by arbitrarily shaped or agglomerated particles,” J. Opt. Soc. Am. A 10, 336–342 (1993).

[Crossref]

B. T. Draine and S. Malhotra, “On graphite and the 2175 Å extinction profile,” Astrophys. J. 414, 632–645 (1993).

[Crossref]

S. B. Singham and C. F. Bohren, “Scattering of unpolarized and polarized light by particle aggregates of different size and fractal dimension,” Langmuir 9, 1431–1435 (1993).

[Crossref]

M. A. Taubenblatt and T. K. Tran, “Calculation of light scattering from particles and structures on a surface by the coupled-dipole method,” J. Opt. Soc. Am. A 10, 912–919 (1993).

[Crossref]

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates. I. Wavelength dependence,” Astron. Astrophys. 263, 423–432 (1992).

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315–320 (1992).

W. C. Chew, Y. M. Wang, and L. Gurel, “Recursive algorithm for wave-scattering using windowed addition theorem,” J. Electromagn. Waves Appl. 6, 1537–1560 (1992).

[Crossref]

J. C. Ku and K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily- shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).

[Crossref]

C. Bourrely, P. Chiappetta, T. Lemaire, and B. Torrésani, “Multidipole formulation of the coupled dipole method for electromagnetic scattering by an arbitrary particle,” J. Opt. Soc. Am. A 9, 1336–1340 (1992).

[Crossref]

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).

[Crossref]

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C3, 583–603 (1992).

C. F. Bohren and S. B. Singham, “Backscattering by non- spherical particles: a review of methods and suggested new approaches,” J. Geophys. Res. 96, 5269–5277 (1991).

[Crossref]

E. H. Newman and K. Kingsley, “An introduction to the method of moments,” J. Comput. Phys. 68, 1–18 (1991).

[Crossref]

C. E. Dungey and C. F. Bohren, “Light scattering by nonspherical particles: a refinement to the coupled-dipole method,” J. Opt. Soc. Am. A 8, 81–87 (1991).

[Crossref]

J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991).

[Crossref]
[PubMed]

R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-Hermitian linear systems,” Numer. Math. 60, 315–339 (1991).

[Crossref]

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).

[Crossref]

K. A. Fuller, “Optical resonances and two-sphere systems,” Appl. Opt. 30, 4716–4731 (1991).

[Crossref]
[PubMed]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).

[Crossref]

J. M. Perrin and J. P. Sivan, “Scattering and polarisation of light by rough and porous interstellar grains,” Astron. Astrophys. 247, 497–504 (1991).

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Resonance optical absorption by fractal agglomerates of smoke aerosols,” Atmos. Environ. 25A, 2563–2569 (1991).

R. A. West, “Optical properties of aggregate particles whose outer diameter is comparable to the wavelength,” Appl. Opt. 30, 5316–5324 (1991).

[Crossref]
[PubMed]

R. A. West and P. H. Smith, “Evidence for aggregate particles in the atmospheres of Titan and Jupiter,” Icarus 90, 330–333 (1991).

[Crossref]

J. M. Perrin and P. L. Lamy, “On the validity of effective- medium theories in the case of light extinction by inhomogeneous dust particles,” Astrophys. J. 364, 146–151 (1990).

[Crossref]

J. M. Perrin and J. P. Sivan, “Porosity and impurities within interstellar grains. Is the ultraviolet bump still explained by carbonaceous material?,” Astron. Astrophys. 228, 238–245 (1990).

K. F. Evans and J. Vivekanandan, “Multiparameter radar and microwave radiative transfer modeling of nonspherical atmospheric ice particles,” IEEE Trans. Geosci. Remote Sensing 28, 423–437 (1990).

[Crossref]

P. J. Flatau, G. L. Stephens, and B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-Toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990).

[Crossref]

R. Harrington, “Origin and development of the method of moments for field computation,” IEEE Antennas Propag. Mag. 32(3), 31–35 (1990).

[Crossref]

J. I. Hage and J. M. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).

[Crossref]

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989).

[Crossref]
[PubMed]

A. W. Glison, “Recent advances in frequency domain techniques for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 25, 2867–2871 (1989).

C. F. Smith, A. F. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[Crossref]

A. F. Peterson, C. F. Smith, and R. Mittra, “Eigenvalues of the moment-method matrix and their effect on the convergence of the conjugate gradient algorithm,” IEEE Trans. Antennas Propag. 36, 1177–1179 (1988).

[Crossref]

S. B. Singham and C. F. Bohren, “Light scattering by an arbitrary particle: the scattering order formulation of the coupled-dipole method,” J. Opt. Soc. Am. A 5, 1867–1872 (1988).

[Crossref]
[PubMed]

T. K. Sarkar, X. Yang, and E. Arvas, “A limited survey of various conjugate gradient methods for complex matrix equations arising in electromagnetic wave interactions,” Wave Motion 10, 527–546 (1988).

[Crossref]

E. K. Miller, “A selective survey of computational electromagnetics,” IEEE Trans. Antennas Propag. 36, 1281–1305 (1988).

[Crossref]

G. H. Goedecke and S. G. O’Brien, “Scattering by irregular inhomogeneous particles via the digitized Green’s function algorithm,” Appl. Opt. 27, 2431–2438 (1988).

[Crossref]
[PubMed]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[Crossref]

E. L. Wright, “The ultraviolet extinction from interstellar graphitic onions,” Nature (London) 366, 227–228 (1988).

[Crossref]

S. B. Singham and G. C. Salzman, “Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation,” J. Chem. Phys. 84, 2658–2667 (1986).

[Crossref]

D. T. Borup and O. P. Gandhi, “Calculation of high- resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method,” IEEE Trans. Microwave Theory Tech. MTT-33, 417–419 (1985).

[Crossref]

T. K. Sarkar, E. Arvas, and S. M. Rao, “Application of the fast Fourier transform and the conjugate gradient method for efficient solution of electromagnetic scattering from both electrically large and small conducting bodies,” Electromagnetics 5, 99–122 (1985).

[Crossref]

D. E. Livesay and K. Chen, “Electromagnetic fields induced inside arbitrarily shaped biological bodies,” IEEE Trans. Microwave Theory Tech. MTT-22, 1273–1280 (1974).

[Crossref]

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[Crossref]

H. DeVoe, “Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys. 43, 3199–3208 (1965).

[Crossref]

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross-section shape,” IEEE Trans. Antennas Propag. AP-13, 334–343 (1965).

[Crossref]

H. DeVoe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” J. Chem. Phys. 41, 393–400 (1964).

[Crossref]

T. K. Sarkar, X. Yang, and E. Arvas, “A limited survey of various conjugate gradient methods for complex matrix equations arising in electromagnetic wave interactions,” Wave Motion 10, 527–546 (1988).

[Crossref]

T. K. Sarkar, E. Arvas, and S. M. Rao, “Application of the fast Fourier transform and the conjugate gradient method for efficient solution of electromagnetic scattering from both electrically large and small conducting bodies,” Electromagnetics 5, 99–122 (1985).

[Crossref]

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates. I. Wavelength dependence,” Astron. Astrophys. 263, 423–432 (1992).

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315–320 (1992).

S. B. Singham and C. F. Bohren, “Scattering of unpolarized and polarized light by particle aggregates of different size and fractal dimension,” Langmuir 9, 1431–1435 (1993).

[Crossref]

C. E. Dungey and C. F. Bohren, “Light scattering by nonspherical particles: a refinement to the coupled-dipole method,” J. Opt. Soc. Am. A 8, 81–87 (1991).

[Crossref]

C. F. Bohren and S. B. Singham, “Backscattering by non- spherical particles: a review of methods and suggested new approaches,” J. Geophys. Res. 96, 5269–5277 (1991).

[Crossref]

S. B. Singham and C. F. Bohren, “Light scattering by an arbitrary particle: the scattering order formulation of the coupled-dipole method,” J. Opt. Soc. Am. A 5, 1867–1872 (1988).

[Crossref]
[PubMed]

S. B. Singham and C. F. Bohren, “Light scattering by an arbitrary particle: a physical reformulation of the coupled-dipoles method,” Opt. Lett. 12, 10–12 (1987).

[Crossref]
[PubMed]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

D. T. Borup and O. P. Gandhi, “Calculation of high- resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method,” IEEE Trans. Microwave Theory Tech. MTT-33, 417–419 (1985).

[Crossref]

A. F. Peterson, S. L. Ray, C. H. Chan, and R. Mittra, “Numerical implementation of the conjugate gradient method and the CG-FFT for electromagnetic scattering,” in Application of Conjugate Gradient Method to Electromagnetics and Signal Processing, T. K. Sarkar, ed. (Elsevier, New York, 1991), Chap. 5.

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Resonance optical absorption by fractal agglomerates of smoke aerosols,” Atmos. Environ. 25A, 2563–2569 (1991).

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989).

[Crossref]
[PubMed]

D. E. Livesay and K. Chen, “Electromagnetic fields induced inside arbitrarily shaped biological bodies,” IEEE Trans. Microwave Theory Tech. MTT-22, 1273–1280 (1974).

[Crossref]

W. C. Chew and C.-C. Lu, “NEPAL—an algorithm for solving the volume integral equation,” Microwave Opt. Tech. Lett. 6, 185–188 (1993).

[Crossref]

W. C. Chew, Y. M. Wang, and L. Gurel, “Recursive algorithm for wave-scattering using windowed addition theorem,” J. Electromagn. Waves Appl. 6, 1537–1560 (1992).

[Crossref]

M. J. Wolff, G. C. Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. (to be published).

H. DeVoe, “Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys. 43, 3199–3208 (1965).

[Crossref]

H. DeVoe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” J. Chem. Phys. 41, 393–400 (1964).

[Crossref]

B. T. Draine and J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).

[Crossref]

B. T. Draine and S. Malhotra, “On graphite and the 2175 Å extinction profile,” Astrophys. J. 414, 632–645 (1993).

[Crossref]

J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991).

[Crossref]
[PubMed]

P. J. Flatau, G. L. Stephens, and B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-Toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990).

[Crossref]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[Crossref]

P. J. Flatau, T. Schneider, and F. Evans, ccg-pak—fortran. Conjugate gradient package for solving complex matrix equations (1993).Available from pflatau@ucsd.edu.

K. F. Evans and J. Vivekanandan, “Multiparameter radar and microwave radiative transfer modeling of nonspherical atmospheric ice particles,” IEEE Trans. Geosci. Remote Sensing 28, 423–437 (1990).

[Crossref]

P. J. Flatau, K. A. Fuller, and D. W. Mackowski, “Scattering by two spheres in contact: comparisons between discrete dipole approximation and modal analysis,” Appl. Opt. 32, 3302–3305 (1993).

[Crossref]
[PubMed]

P. J. Flatau, T. Schneider, and F. Evans, ccg-pak—fortran. Conjugate gradient package for solving complex matrix equations (1993).Available from pflatau@ucsd.edu.

J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991).

[Crossref]
[PubMed]

P. J. Flatau, G. L. Stephens, and B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-Toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990).

[Crossref]

P. J. Flatau, “Scattering by irregular particles in anomalous diffraction and discrete dipole approximations,” Atmos. Sci. Paper 517 (Department of Atmospheric Science, Colorado State University, Fort Collins, Colo., 1992).

R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-Hermitian linear systems,” Numer. Math. 60, 315–339 (1991).

[Crossref]

V. Simoncini and E. Gallopoulos, “An iterative method for nonsymmetric systems with multiple right-hand sides,” Tech. Rep. 1242 (Center for Supercomputing Research and Development, University of Illinois at Urbana–Champaign, Champaign, III., 1992).

D. T. Borup and O. P. Gandhi, “Calculation of high- resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method,” IEEE Trans. Microwave Theory Tech. MTT-33, 417–419 (1985).

[Crossref]

A. W. Glison, “Recent advances in frequency domain techniques for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 25, 2867–2871 (1989).

B. T. Draine and J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).

[Crossref]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315–320 (1992).

J. I. Hage and J. M. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).

[Crossref]

W. C. Chew, Y. M. Wang, and L. Gurel, “Recursive algorithm for wave-scattering using windowed addition theorem,” J. Electromagn. Waves Appl. 6, 1537–1560 (1992).

[Crossref]

J. I. Hage and J. M. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).

[Crossref]

W. Hager, Applied Numerical Linear Algebra (Prentice-Hall, Englewood Cliffs, N.J., 1988).

R. Harrington, “Origin and development of the method of moments for field computation,” IEEE Antennas Propag. Mag. 32(3), 31–35 (1990).

[Crossref]

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

G. W. Kattawar and T. J. Humphreys, “Electromagnetic scattering from two identical pseudospheres,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 177–190.

[Crossref]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315–320 (1992).

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Resonance optical absorption by fractal agglomerates of smoke aerosols,” Atmos. Environ. 25A, 2563–2569 (1991).

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989).

[Crossref]
[PubMed]

J. D. Jackson, Classical Electromagnetism (Wiley, New York, 1975).

P. Joly, “Résolution de systèmes linéaires avec plusieurs members par la méthode du gradient conjugué,” Tech. Rep. R-91012 (Publications du Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris, 1991).

G. W. Kattawar and T. J. Humphreys, “Electromagnetic scattering from two identical pseudospheres,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 177–190.

[Crossref]

E. H. Newman and K. Kingsley, “An introduction to the method of moments,” J. Comput. Phys. 68, 1–18 (1991).

[Crossref]

L. Knockaert, “A note on the relationship between the conjugate gradient method and polynomials orthogonal over the spectrum of a linear operator,” IEEE Trans. Antennas Propag. AP-35, 1089–1091 (1987).

[Crossref]

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates. I. Wavelength dependence,” Astron. Astrophys. 263, 423–432 (1992).

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315–320 (1992).

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).

[Crossref]

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C3, 583–603 (1992).

J. M. Perrin and P. L. Lamy, “On the validity of effective- medium theories in the case of light extinction by inhomogeneous dust particles,” Astrophys. J. 364, 146–151 (1990).

[Crossref]

D. E. Livesay and K. Chen, “Electromagnetic fields induced inside arbitrarily shaped biological bodies,” IEEE Trans. Microwave Theory Tech. MTT-22, 1273–1280 (1974).

[Crossref]

H. A. Lorentz, Theory of Electrons (Teubner, Leipzig, 1909).

W. C. Chew and C.-C. Lu, “NEPAL—an algorithm for solving the volume integral equation,” Microwave Opt. Tech. Lett. 6, 185–188 (1993).

[Crossref]

B. T. Draine and S. Malhotra, “On graphite and the 2175 Å extinction profile,” Astrophys. J. 414, 632–645 (1993).

[Crossref]

F. Rouleau and P. G. Martin, “A new method to calculate the extinction properties of irregularly shaped particles,” Astrophys. J. 414, 803–814 (1993).

[Crossref]

M. J. Wolff, G. C. Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. (to be published).

E. K. Miller, “A selective survey of computational electromagnetics,” IEEE Trans. Antennas Propag. 36, 1281–1305 (1988).

[Crossref]

C. F. Smith, A. F. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[Crossref]

A. F. Peterson, C. F. Smith, and R. Mittra, “Eigenvalues of the moment-method matrix and their effect on the convergence of the conjugate gradient algorithm,” IEEE Trans. Antennas Propag. 36, 1177–1179 (1988).

[Crossref]

A. F. Peterson, S. L. Ray, C. H. Chan, and R. Mittra, “Numerical implementation of the conjugate gradient method and the CG-FFT for electromagnetic scattering,” in Application of Conjugate Gradient Method to Electromagnetics and Signal Processing, T. K. Sarkar, ed. (Elsevier, New York, 1991), Chap. 5.

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates. I. Wavelength dependence,” Astron. Astrophys. 263, 423–432 (1992).

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315–320 (1992).

R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-Hermitian linear systems,” Numer. Math. 60, 315–339 (1991).

[Crossref]

E. H. Newman and K. Kingsley, “An introduction to the method of moments,” J. Comput. Phys. 68, 1–18 (1991).

[Crossref]

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Resonance optical absorption by fractal agglomerates of smoke aerosols,” Atmos. Environ. 25A, 2563–2569 (1991).

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989).

[Crossref]
[PubMed]

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[Crossref]

J. M. Perrin and J. P. Sivan, “Light scattering by dust grains: effects of the state of the surface on the validity of the discrete dipole approximation,” C. R. Acad. Sci. Paris Ser. II 316, 47–53 (1993).

J. M. Perrin and J. P. Sivan, “Scattering and polarisation of light by rough and porous interstellar grains,” Astron. Astrophys. 247, 497–504 (1991).

J. M. Perrin and J. P. Sivan, “Porosity and impurities within interstellar grains. Is the ultraviolet bump still explained by carbonaceous material?,” Astron. Astrophys. 228, 238–245 (1990).

J. M. Perrin and P. L. Lamy, “On the validity of effective- medium theories in the case of light extinction by inhomogeneous dust particles,” Astrophys. J. 364, 146–151 (1990).

[Crossref]

C. F. Smith, A. F. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[Crossref]

A. F. Peterson, C. F. Smith, and R. Mittra, “Eigenvalues of the moment-method matrix and their effect on the convergence of the conjugate gradient algorithm,” IEEE Trans. Antennas Propag. 36, 1177–1179 (1988).

[Crossref]

A. F. Peterson, S. L. Ray, C. H. Chan, and R. Mittra, “Numerical implementation of the conjugate gradient method and the CG-FFT for electromagnetic scattering,” in Application of Conjugate Gradient Method to Electromagnetics and Signal Processing, T. K. Sarkar, ed. (Elsevier, New York, 1991), Chap. 5.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[Crossref]

T. K. Sarkar, E. Arvas, and S. M. Rao, “Application of the fast Fourier transform and the conjugate gradient method for efficient solution of electromagnetic scattering from both electrically large and small conducting bodies,” Electromagnetics 5, 99–122 (1985).

[Crossref]

A. F. Peterson, S. L. Ray, C. H. Chan, and R. Mittra, “Numerical implementation of the conjugate gradient method and the CG-FFT for electromagnetic scattering,” in Application of Conjugate Gradient Method to Electromagnetics and Signal Processing, T. K. Sarkar, ed. (Elsevier, New York, 1991), Chap. 5.

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross-section shape,” IEEE Trans. Antennas Propag. AP-13, 334–343 (1965).

[Crossref]

F. Rouleau and P. G. Martin, “A new method to calculate the extinction properties of irregularly shaped particles,” Astrophys. J. 414, 803–814 (1993).

[Crossref]

S. B. Singham and G. C. Salzman, “Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation,” J. Chem. Phys. 84, 2658–2667 (1986).

[Crossref]

T. K. Sarkar, X. Yang, and E. Arvas, “A limited survey of various conjugate gradient methods for complex matrix equations arising in electromagnetic wave interactions,” Wave Motion 10, 527–546 (1988).

[Crossref]

T. K. Sarkar, E. Arvas, and S. M. Rao, “Application of the fast Fourier transform and the conjugate gradient method for efficient solution of electromagnetic scattering from both electrically large and small conducting bodies,” Electromagnetics 5, 99–122 (1985).

[Crossref]

P. J. Flatau, T. Schneider, and F. Evans, ccg-pak—fortran. Conjugate gradient package for solving complex matrix equations (1993).Available from pflatau@ucsd.edu.

M. J. Wolff, G. C. Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. (to be published).

J. C. Ku and K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily- shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).

[Crossref]

V. Simoncini and E. Gallopoulos, “An iterative method for nonsymmetric systems with multiple right-hand sides,” Tech. Rep. 1242 (Center for Supercomputing Research and Development, University of Illinois at Urbana–Champaign, Champaign, III., 1992).

S. B. Singham and C. F. Bohren, “Scattering of unpolarized and polarized light by particle aggregates of different size and fractal dimension,” Langmuir 9, 1431–1435 (1993).

[Crossref]

C. F. Bohren and S. B. Singham, “Backscattering by non- spherical particles: a review of methods and suggested new approaches,” J. Geophys. Res. 96, 5269–5277 (1991).

[Crossref]

S. B. Singham and C. F. Bohren, “Light scattering by an arbitrary particle: the scattering order formulation of the coupled-dipole method,” J. Opt. Soc. Am. A 5, 1867–1872 (1988).

[Crossref]
[PubMed]

S. B. Singham and C. F. Bohren, “Light scattering by an arbitrary particle: a physical reformulation of the coupled-dipoles method,” Opt. Lett. 12, 10–12 (1987).

[Crossref]
[PubMed]

S. B. Singham and G. C. Salzman, “Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation,” J. Chem. Phys. 84, 2658–2667 (1986).

[Crossref]

J. M. Perrin and J. P. Sivan, “Light scattering by dust grains: effects of the state of the surface on the validity of the discrete dipole approximation,” C. R. Acad. Sci. Paris Ser. II 316, 47–53 (1993).

J. M. Perrin and J. P. Sivan, “Scattering and polarisation of light by rough and porous interstellar grains,” Astron. Astrophys. 247, 497–504 (1991).

J. M. Perrin and J. P. Sivan, “Porosity and impurities within interstellar grains. Is the ultraviolet bump still explained by carbonaceous material?,” Astron. Astrophys. 228, 238–245 (1990).

C. F. Smith, A. F. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[Crossref]

A. F. Peterson, C. F. Smith, and R. Mittra, “Eigenvalues of the moment-method matrix and their effect on the convergence of the conjugate gradient algorithm,” IEEE Trans. Antennas Propag. 36, 1177–1179 (1988).

[Crossref]

R. A. West and P. H. Smith, “Evidence for aggregate particles in the atmospheres of Titan and Jupiter,” Icarus 90, 330–333 (1991).

[Crossref]

K. F. Evans and J. Vivekanandan, “Multiparameter radar and microwave radiative transfer modeling of nonspherical atmospheric ice particles,” IEEE Trans. Geosci. Remote Sensing 28, 423–437 (1990).

[Crossref]

W. C. Chew, Y. M. Wang, and L. Gurel, “Recursive algorithm for wave-scattering using windowed addition theorem,” J. Electromagn. Waves Appl. 6, 1537–1560 (1992).

[Crossref]

M. J. Wolff, G. C. Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. (to be published).

E. L. Wright, “The ultraviolet extinction from interstellar graphitic onions,” Nature (London) 366, 227–228 (1988).

[Crossref]

T. K. Sarkar, X. Yang, and E. Arvas, “A limited survey of various conjugate gradient methods for complex matrix equations arising in electromagnetic wave interactions,” Wave Motion 10, 527–546 (1988).

[Crossref]

G. H. Goedecke and S. G. O’Brien, “Scattering by irregular inhomogeneous particles via the digitized Green’s function algorithm,” Appl. Opt. 27, 2431–2438 (1988).

[Crossref]
[PubMed]

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989).

[Crossref]
[PubMed]

P. J. Flatau, K. A. Fuller, and D. W. Mackowski, “Scattering by two spheres in contact: comparisons between discrete dipole approximation and modal analysis,” Appl. Opt. 32, 3302–3305 (1993).

[Crossref]
[PubMed]

P. Barber and C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864–2872 (1975).

[Crossref]
[PubMed]

D.-S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 18, 1190–1197 (1979).

[Crossref]
[PubMed]

K. A. Fuller, “Optical resonances and two-sphere systems,” Appl. Opt. 30, 4716–4731 (1991).

[Crossref]
[PubMed]

R. A. West, “Optical properties of aggregate particles whose outer diameter is comparable to the wavelength,” Appl. Opt. 30, 5316–5324 (1991).

[Crossref]
[PubMed]

T. Kozasa, J. Blum, and T. Mukai, “Optical properties of dust aggregates. I. Wavelength dependence,” Astron. Astrophys. 263, 423–432 (1992).

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315–320 (1992).

J. M. Perrin and J. P. Sivan, “Scattering and polarisation of light by rough and porous interstellar grains,” Astron. Astrophys. 247, 497–504 (1991).

J. M. Perrin and J. P. Sivan, “Porosity and impurities within interstellar grains. Is the ultraviolet bump still explained by carbonaceous material?,” Astron. Astrophys. 228, 238–245 (1990).

B. T. Draine and S. Malhotra, “On graphite and the 2175 Å extinction profile,” Astrophys. J. 414, 632–645 (1993).

[Crossref]

J. M. Perrin and P. L. Lamy, “On the validity of effective- medium theories in the case of light extinction by inhomogeneous dust particles,” Astrophys. J. 364, 146–151 (1990).

[Crossref]

F. Rouleau and P. G. Martin, “A new method to calculate the extinction properties of irregularly shaped particles,” Astrophys. J. 414, 803–814 (1993).

[Crossref]

B. T. Draine and J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).

[Crossref]

J. I. Hage and J. M. Greenberg, “A model for the optical properties of porous grains,” Astrophys. J. 361, 251–259 (1990).

[Crossref]

A. Lakhtakia, “General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers,” Astrophys. J. 394, 494–499 (1992).

[Crossref]

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[Crossref]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[Crossref]

M. F. Iskander, H. Y. Chen, and J. E. Penner, “Resonance optical absorption by fractal agglomerates of smoke aerosols,” Atmos. Environ. 25A, 2563–2569 (1991).

J. M. Perrin and J. P. Sivan, “Light scattering by dust grains: effects of the state of the surface on the validity of the discrete dipole approximation,” C. R. Acad. Sci. Paris Ser. II 316, 47–53 (1993).

P. J. Flatau, T. Schneider, and F. Evans, ccg-pak—fortran. Conjugate gradient package for solving complex matrix equations (1993).Available from pflatau@ucsd.edu.

T. K. Sarkar, E. Arvas, and S. M. Rao, “Application of the fast Fourier transform and the conjugate gradient method for efficient solution of electromagnetic scattering from both electrically large and small conducting bodies,” Electromagnetics 5, 99–122 (1985).

[Crossref]

R. A. West and P. H. Smith, “Evidence for aggregate particles in the atmospheres of Titan and Jupiter,” Icarus 90, 330–333 (1991).

[Crossref]

R. Harrington, “Origin and development of the method of moments for field computation,” IEEE Antennas Propag. Mag. 32(3), 31–35 (1990).

[Crossref]

J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross-section shape,” IEEE Trans. Antennas Propag. AP-13, 334–343 (1965).

[Crossref]

A. W. Glison, “Recent advances in frequency domain techniques for electromagnetic scattering problems,” IEEE Trans. Antennas Propag. 25, 2867–2871 (1989).

E. K. Miller, “A selective survey of computational electromagnetics,” IEEE Trans. Antennas Propag. 36, 1281–1305 (1988).

[Crossref]

L. Knockaert, “A note on the relationship between the conjugate gradient method and polynomials orthogonal over the spectrum of a linear operator,” IEEE Trans. Antennas Propag. AP-35, 1089–1091 (1987).

[Crossref]

A. F. Peterson, C. F. Smith, and R. Mittra, “Eigenvalues of the moment-method matrix and their effect on the convergence of the conjugate gradient algorithm,” IEEE Trans. Antennas Propag. 36, 1177–1179 (1988).

[Crossref]

C. F. Smith, A. F. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[Crossref]

K. F. Evans and J. Vivekanandan, “Multiparameter radar and microwave radiative transfer modeling of nonspherical atmospheric ice particles,” IEEE Trans. Geosci. Remote Sensing 28, 423–437 (1990).

[Crossref]

D. T. Borup and O. P. Gandhi, “Calculation of high- resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method,” IEEE Trans. Microwave Theory Tech. MTT-33, 417–419 (1985).

[Crossref]

D. E. Livesay and K. Chen, “Electromagnetic fields induced inside arbitrarily shaped biological bodies,” IEEE Trans. Microwave Theory Tech. MTT-22, 1273–1280 (1974).

[Crossref]

A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields,” Int. J. Mod. Phys. C3, 583–603 (1992).

S. B. Singham and G. C. Salzman, “Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation,” J. Chem. Phys. 84, 2658–2667 (1986).

[Crossref]

H. DeVoe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” J. Chem. Phys. 41, 393–400 (1964).

[Crossref]

H. DeVoe, “Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys. 43, 3199–3208 (1965).

[Crossref]

E. H. Newman and K. Kingsley, “An introduction to the method of moments,” J. Comput. Phys. 68, 1–18 (1991).

[Crossref]

W. C. Chew, Y. M. Wang, and L. Gurel, “Recursive algorithm for wave-scattering using windowed addition theorem,” J. Electromagn. Waves Appl. 6, 1537–1560 (1992).

[Crossref]

C. F. Bohren and S. B. Singham, “Backscattering by non- spherical particles: a review of methods and suggested new approaches,” J. Geophys. Res. 96, 5269–5277 (1991).

[Crossref]

C. Bourrely, P. Chiappetta, T. Lemaire, and B. Torrésani, “Multidipole formulation of the coupled dipole method for electromagnetic scattering by an arbitrary particle,” J. Opt. Soc. Am. A 9, 1336–1340 (1992).

[Crossref]

C. E. Dungey and C. F. Bohren, “Light scattering by nonspherical particles: a refinement to the coupled-dipole method,” J. Opt. Soc. Am. A 8, 81–87 (1991).

[Crossref]

P. J. Flatau, G. L. Stephens, and B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-Toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990).

[Crossref]

J. C. Ku, “Comparisons of coupled-dipole solutions and dipole refractive indices for light scattering and absorption by arbitrarily shaped or agglomerated particles,” J. Opt. Soc. Am. A 10, 336–342 (1993).

[Crossref]

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).

[Crossref]

S. B. Singham and C. F. Bohren, “Light scattering by an arbitrary particle: the scattering order formulation of the coupled-dipole method,” J. Opt. Soc. Am. A 5, 1867–1872 (1988).

[Crossref]
[PubMed]

M. A. Taubenblatt and T. K. Tran, “Calculation of light scattering from particles and structures on a surface by the coupled-dipole method,” J. Opt. Soc. Am. A 10, 912–919 (1993).

[Crossref]

J. C. Ku and K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily- shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).

[Crossref]

S. B. Singham and C. F. Bohren, “Scattering of unpolarized and polarized light by particle aggregates of different size and fractal dimension,” Langmuir 9, 1431–1435 (1993).

[Crossref]

W. C. Chew and C.-C. Lu, “NEPAL—an algorithm for solving the volume integral equation,” Microwave Opt. Tech. Lett. 6, 185–188 (1993).

[Crossref]

E. L. Wright, “The ultraviolet extinction from interstellar graphitic onions,” Nature (London) 366, 227–228 (1988).

[Crossref]

R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-Hermitian linear systems,” Numer. Math. 60, 315–339 (1991).

[Crossref]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).

[Crossref]

T. K. Sarkar, X. Yang, and E. Arvas, “A limited survey of various conjugate gradient methods for complex matrix equations arising in electromagnetic wave interactions,” Wave Motion 10, 527–546 (1988).

[Crossref]

A. F. Peterson, S. L. Ray, C. H. Chan, and R. Mittra, “Numerical implementation of the conjugate gradient method and the CG-FFT for electromagnetic scattering,” in Application of Conjugate Gradient Method to Electromagnetics and Signal Processing, T. K. Sarkar, ed. (Elsevier, New York, 1991), Chap. 5.

W. Hager, Applied Numerical Linear Algebra (Prentice-Hall, Englewood Cliffs, N.J., 1988).

J. D. Jackson, Classical Electromagnetism (Wiley, New York, 1975).

H. A. Lorentz, Theory of Electrons (Teubner, Leipzig, 1909).

The fortranprogram ddscat.4b is available from the authors. Direct queries to the Internet address draine@astro.princeton.edu or pflatau@macao.ucsd.edu.

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

G. W. Kattawar and T. J. Humphreys, “Electromagnetic scattering from two identical pseudospheres,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 177–190.

[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

P. J. Flatau, “Scattering by irregular particles in anomalous diffraction and discrete dipole approximations,” Atmos. Sci. Paper 517 (Department of Atmospheric Science, Colorado State University, Fort Collins, Colo., 1992).

M. J. Wolff, G. C. Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. (to be published).

P. Joly, “Résolution de systèmes linéaires avec plusieurs members par la méthode du gradient conjugué,” Tech. Rep. R-91012 (Publications du Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris, 1991).

V. Simoncini and E. Gallopoulos, “An iterative method for nonsymmetric systems with multiple right-hand sides,” Tech. Rep. 1242 (Center for Supercomputing Research and Development, University of Illinois at Urbana–Champaign, Champaign, III., 1992).