Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Angle-suppressed scattering and optical forces on submicrometer dielectric particles

Not Accessible

Your library or personal account may give you access

Abstract

We show that submicrometer silicon spheres, whose polarizabilities are completely given by their two first Mie coefficients, are an excellent laboratory to test effects of both angle-suppressed and resonant differential scattering cross sections. Specifically, outstanding scattering angular distributions, with zero forward- or backward-scattered intensity, (i.e., the so-called Kerker conditions), previously discussed for hypothetical magnetodielectric particles, are now observed for those Si objects in the near infrared. Interesting new consequences for the corresponding optical forces are derived from the interplay, both in and out of resonance, between the electric- and magnetic-induced dipoles.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical forces on small magnetodielectric particles

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada
Opt. Express 18(11) 11428-11443 (2010)

Optical forces from evanescent Bessel beams, multiple reflections, and Kerker conditions in magnetodielectric spheres and cylinders

Juan Miguel Auñón and Manuel Nieto-Vesperinas
J. Opt. Soc. Am. A 31(9) 1984-1992 (2014)

Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles

Brice Rolly, Brian Stout, and Nicolas Bonod
Opt. Express 20(18) 20376-20386 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.