Abstract

Iterative image deconvolution algorithms generally lack objective criteria for deciding when to terminate iterations, often relying on ad hoc metrics for determining optimal performance. A statistical-information-based analysis of the popular Richardson–Lucy iterative deblurring algorithm is presented after clarification of the detailed nature of noise amplification and resolution recovery as the algorithm iterates. Monitoring the information content of the reconstructed image furnishes an alternative criterion for assessing and stopping such an iterative algorithm. It is straightforward to implement prior knowledge and other conditioning tools in this statistical approach.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Improved vector-extrapolation-based Richardson–Lucy algorithm used for wavefront coded imaging

Hui Zhao, JingJing Xia, Ling Zhang, and Xuewu Fan
Appl. Opt. 58(13) 3630-3638 (2019)

Blind deconvolution by means of the Richardson–Lucy algorithm

D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker
J. Opt. Soc. Am. A 12(1) 58-65 (1995)

Super-resolution algorithm based on Richardson–Lucy deconvolution for three-dimensional structured illumination microscopy

Yanwei Zhang, Song Lang, Hongwei Wang, Jiasheng Liao, and Yan Gong
J. Opt. Soc. Am. A 36(2) 173-178 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription