Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model

Not Accessible

Your library or personal account may give you access

Abstract

We extend our previously developed diffraction tomography model of diffuse photon density wave propagation in turbid media to analyze the forward problem associated with detecting and resolving both absorptive and scattering inhomogeneities. Our results assume that detection occurs in a plane but no restrictions are placed on the illumination source geometry. We then specialize these results to plane-wave illumination and derive the turbid media version of the Fourier diffraction theorem. We also develop a shot-noise-limited Fourier-domain signal-to-noise-ratio (SNR) expression to determine how background, system, and inhomogeneity parameters affect one’s ability to detect and resolve inhomogeneities. We show that, in general, scattering inhomogeneities are more easily resolved than absorbing inhomogeneities. We also show that lower temporal modulation frequencies enhance one’s ability to detect and resolve inhomogeneities. These theoretical results are compared with previously published image-domain SNR results, and qualitative agreement is demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of forward scattering of diffuse photon-density waves in turbid media:?a diffraction tomography approach to an analytic solution

Deborah L. Lasocki, Charles L. Matson, and Peter J. Collins
Opt. Lett. 23(7) 558-560 (1998)

Backpropagation in turbid media

Charles L. Matson and Hanli Liu
J. Opt. Soc. Am. A 16(6) 1254-1265 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved