Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of optical scattering experiments and the quasi-crystalline approximation for dense media

Not Accessible

Your library or personal account may give you access

Abstract

The fractional volume dependence of the extinction rate in dense media is studied. Results from optical scattering experiments are compared with the theoretical extinction rate calculated by independent-scattering theory and the quasi-crystalline approximation (QCA). QCA takes into account the coherent interaction among scatterers in the vicinity of each other, as weighted by a pair distribution function. QCA is shown to be in good agreement with experimental data.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids

Chi O. Ao and Jin A. Kong
J. Opt. Soc. Am. A 19(6) 1145-1156 (2002)

Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries

L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winebrenner
J. Opt. Soc. Am. A 12(8) 1772-1781 (1995)

Radiative wave and cyclical transfer equations for dense nontenuous media

Leung Tsang and Akira Ishimaru
J. Opt. Soc. Am. A 2(12) 2187-2193 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved