Abstract

Variation of Photoelectric Current with Temperature. The photoelectric current from pure potassium, in highly exhausted cells, is found, contrary to previous belief, to vary with the temperature, and in the sense of the temperature change. The temperature range investigated was from room temperature to the temperature of liquid air; the variation of the photoelectric current with temperature is negligible above 0°C but becomes greater the lower the temperature. The change in photoelectric current is greater the lower the frequency of the exciting radiation, and occurs in both the normal and selective photoelectric effects.

Variation of Surface Work Function with Temperature. The variation of photoelectric current with temperature is shown to be in harmony with the supposition that the work function of the surface is altered. Such an alteration of the work function is shown experimentally by the occurrence of a bodily shift along the voltage axis of the voltage-current curve of a photo-sensitive cathode when the potassium, which is changed in temperature, is the anode. It is further checked by the change in the long wave-limit of photoelectric emission of the surface whose temperature is varied. On cooling potassium from +20° to −180°C its work function is increased by about 1/5 volt.

© 1924 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lienhop, Ann. der. Physik,  21, p. 281; 1906.
    [CrossRef]
  2. Ladenburg, Verh. d. d. Phys. Ges.,  9, p. 165; 1907.
  3. Millikan and Winchester, Phil. Mag.,  14, p. 188; 1907.
    [CrossRef]
  4. Varley and Unwin, Proc. Roy. Soc. Edin. 27, p. 117; 1907.
  5. Dember, Ann. der Physik,  23, p. 957; 1907.
    [CrossRef]
  6. Arnold and Ives, Proc. Nat. Acad. Sci.,  7, p. 323; 1921.
    [CrossRef]
  7. Ives, Dushman, and Karrer, Astrophys. Journ., p. 9, Jan.1916.
    [CrossRef]
  8. Richardson, Phil. Mag.,  24, p. 570; 1912.
    [CrossRef]
  9. Richardson and Compton, Phil. Mag.,  24, p. 575; 1912.
    [CrossRef]
  10. Page, Am. J. Sci., (4)  36, p. 501; 1913.
    [CrossRef]
  11. Millikan, Phys. Rev.,  7, p. 18; 1916.
    [CrossRef]
  12. Lindemann, Verh. d. d. Phys. Ges.,  13, p. 482; 1911.
  13. McKeehan, Proc. Nat. Acad. Sci.,  8, p. 254; 1922.
    [CrossRef]

1922 (1)

McKeehan, Proc. Nat. Acad. Sci.,  8, p. 254; 1922.
[CrossRef]

1921 (1)

Arnold and Ives, Proc. Nat. Acad. Sci.,  7, p. 323; 1921.
[CrossRef]

1916 (2)

Ives, Dushman, and Karrer, Astrophys. Journ., p. 9, Jan.1916.
[CrossRef]

Millikan, Phys. Rev.,  7, p. 18; 1916.
[CrossRef]

1913 (1)

Page, Am. J. Sci., (4)  36, p. 501; 1913.
[CrossRef]

1912 (2)

Richardson, Phil. Mag.,  24, p. 570; 1912.
[CrossRef]

Richardson and Compton, Phil. Mag.,  24, p. 575; 1912.
[CrossRef]

1911 (1)

Lindemann, Verh. d. d. Phys. Ges.,  13, p. 482; 1911.

1907 (4)

Ladenburg, Verh. d. d. Phys. Ges.,  9, p. 165; 1907.

Millikan and Winchester, Phil. Mag.,  14, p. 188; 1907.
[CrossRef]

Varley and Unwin, Proc. Roy. Soc. Edin. 27, p. 117; 1907.

Dember, Ann. der Physik,  23, p. 957; 1907.
[CrossRef]

1906 (1)

Lienhop, Ann. der. Physik,  21, p. 281; 1906.
[CrossRef]

Arnold,

Arnold and Ives, Proc. Nat. Acad. Sci.,  7, p. 323; 1921.
[CrossRef]

Compton,

Richardson and Compton, Phil. Mag.,  24, p. 575; 1912.
[CrossRef]

Dember,

Dember, Ann. der Physik,  23, p. 957; 1907.
[CrossRef]

Dushman,

Ives, Dushman, and Karrer, Astrophys. Journ., p. 9, Jan.1916.
[CrossRef]

Ives,

Arnold and Ives, Proc. Nat. Acad. Sci.,  7, p. 323; 1921.
[CrossRef]

Ives, Dushman, and Karrer, Astrophys. Journ., p. 9, Jan.1916.
[CrossRef]

Karrer,

Ives, Dushman, and Karrer, Astrophys. Journ., p. 9, Jan.1916.
[CrossRef]

Ladenburg,

Ladenburg, Verh. d. d. Phys. Ges.,  9, p. 165; 1907.

Lienhop,

Lienhop, Ann. der. Physik,  21, p. 281; 1906.
[CrossRef]

Lindemann,

Lindemann, Verh. d. d. Phys. Ges.,  13, p. 482; 1911.

McKeehan,

McKeehan, Proc. Nat. Acad. Sci.,  8, p. 254; 1922.
[CrossRef]

Millikan,

Millikan, Phys. Rev.,  7, p. 18; 1916.
[CrossRef]

Millikan and Winchester, Phil. Mag.,  14, p. 188; 1907.
[CrossRef]

Page,

Page, Am. J. Sci., (4)  36, p. 501; 1913.
[CrossRef]

Richardson,

Richardson, Phil. Mag.,  24, p. 570; 1912.
[CrossRef]

Richardson and Compton, Phil. Mag.,  24, p. 575; 1912.
[CrossRef]

Unwin,

Varley and Unwin, Proc. Roy. Soc. Edin. 27, p. 117; 1907.

Varley,

Varley and Unwin, Proc. Roy. Soc. Edin. 27, p. 117; 1907.

Winchester,

Millikan and Winchester, Phil. Mag.,  14, p. 188; 1907.
[CrossRef]

Am. J. Sci. (1)

Page, Am. J. Sci., (4)  36, p. 501; 1913.
[CrossRef]

Ann. der Physik (1)

Dember, Ann. der Physik,  23, p. 957; 1907.
[CrossRef]

Ann. der. Physik (1)

Lienhop, Ann. der. Physik,  21, p. 281; 1906.
[CrossRef]

Astrophys. Journ. (1)

Ives, Dushman, and Karrer, Astrophys. Journ., p. 9, Jan.1916.
[CrossRef]

Phil. Mag. (3)

Richardson, Phil. Mag.,  24, p. 570; 1912.
[CrossRef]

Richardson and Compton, Phil. Mag.,  24, p. 575; 1912.
[CrossRef]

Millikan and Winchester, Phil. Mag.,  14, p. 188; 1907.
[CrossRef]

Phys. Rev. (1)

Millikan, Phys. Rev.,  7, p. 18; 1916.
[CrossRef]

Proc. Nat. Acad. Sci. (2)

McKeehan, Proc. Nat. Acad. Sci.,  8, p. 254; 1922.
[CrossRef]

Arnold and Ives, Proc. Nat. Acad. Sci.,  7, p. 323; 1921.
[CrossRef]

Proc. Roy. Soc. Edin. (1)

Varley and Unwin, Proc. Roy. Soc. Edin. 27, p. 117; 1907.

Verh. d. d. Phys. Ges. (2)

Ladenburg, Verh. d. d. Phys. Ges.,  9, p. 165; 1907.

Lindemann, Verh. d. d. Phys. Ges.,  13, p. 482; 1911.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Type of photoelectric cell suitable for showing temperature effects.

Fig. 2
Fig. 2

Photoelectric currents at room and liquid air temperatures for yellow and blue light.

Fig. 3
Fig. 3

Variation of photoelectric current with temperature for yellow, green and blue light.

Fig. 4
Fig. 4

Voltage-current relations in an ideal photoelectric cell.

Fig. 5
Fig. 5

Special type of cell, containing central potassium electrode arranged for cooling with liquid air.

Fig. 6
Fig. 6

Voltage-current curve of central electrode cell.

Fig. 7
Fig. 7

Cell with specular central electrode.

Fig. 8
Fig. 8

Voltage-current curves for the selective photoelectric effect, at 0° and −180° C.

Fig. 9
Fig. 9

Voltage-current curves for the normal photoelectric effect, at 0° and −180° C.

Fig. 10
Fig. 10

Cell with inner and outer potassium electrodes of widely different size.

Fig. 11
Fig. 11

Diagrammatic representation of behavior of voltage-current curve of cell shown in Fig. 10 on cooling outer and inner electrodes.

Fig. 12
Fig. 12

Voltage-current curves of cell shown in Fig. 10 at room and liquid air temperatures.

Fig. 13
Fig. 13

Effect of cooling outer and inner electrodes in succession.

Fig. 14
Fig. 14

Distribution of response according to wave-length, room temperature and liquid air temperature.

Fig. 15
Fig. 15

Emission in the long wave region of the spectrum, at room and liquid air temperatures.

Fig. 16
Fig. 16

Observed and calculated ratios of emission through the spectrum at 0° and −180° C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( w 0 w 0 h ) = ( e ( V V ) h ) = ν 0 ν 0 1
F ( ν ) = A 1 h R 2 ν 2 ( 1 w 0 h ν )
F ( ν ) = A h R 2 ν 3 ( ν ν 0 )
F ( ν ) F ( ν ) = ν ν 0 ν ν 0