Abstract

Using a Gaussian weighting function for the receiver aperture, we obtain a closed-form representation for the receiver-aperture averaging effect for the intensity fluctuation of a beam wave in the turbulent atmosphere. It is shown that, unlike for the plane-wave case, the power scintillations do not always decrease when the receiver aperture is increased. The reasons are that (1) the intensity fluctuations on the axis for a coherent beam-wave source are smaller than these off the axis and (2) the averaging effect cannot show up when the total beam is within a coherent patch (i.e., the coherence length is larger than the beamwidth).

© 1983 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence

Frida Strömqvist Vetelino, Cynthia Young, Larry Andrews, and Jaume Recolons
Appl. Opt. 46(11) 2099-2108 (2007)

Beam-intensity fluctuations in atmospheric turbulence

J. Carl Leader
J. Opt. Soc. Am. 71(5) 542-558 (1981)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription