Abstract

The fields diffracted by planar one- or two-dimensional periodic objects, and in particular their Fourier and Fresnel self-images, can be computed with the aid of a ray-tracing technique based on the Fermat principle. This method (geometrical self-imaging) yields accurate results for any numerical aperture and image field. An analytical study of the image formation, carried out in the fourth-order approximation for the phase, leads to the definition of self-imaging aberrations. These aberrations are strongly dependent on spatial frequency and render the well-known relationships derived by Rayleigh for the location and magnification of self-images approximate at best. The aberrations can be described graphically by a phase diagram and a magnification diagram, which permit interpretation of the properties of high-aperture, large-field self-images and the prediction of optimal imaging conditions. In the case of large magnifications (100× and larger), we present a simple method to eliminate all fourth-order aberrations completely and even sixth-order ones partially. This method consists of introducing a compensating spherical aberration to the incident wave, e.g., by the insertion of a glass plate of appropriate index and thickness just before the object. Thus object spatial frequencies up to about 800 mm−1 can be imaged almost without aberration for several image periods.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription