Abstract

High-resolution spectra of a 232ThI4/230ThI4 electrodeless discharge lamp were obtained from 5600 to 36000 cm−1 with a Fourier-transform spectrometer. The splittings of more than 2800 Th i isotopic doublets were measured to an accuracy of 0.001 cm−1. Level isotope shifts were determined for 274 even and 318 odd levels of Th i.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Engleman and B. A. Palmer, “Precision isotope shifts for the heavy elements. I. Neutral uranium in the visible and near infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
    [Crossref]
  2. E. A. Vernyi and V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).
  3. E. A. Vernyi and V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).
  4. V. N. Egorov, M. F. Korintskaya, and V. K. Markov, “Isolation of the isotope thorium-229 and investigation of its spectroscopic properties,” Radiokhim. 11, 542–546 (1969).
  5. G. W. Charles, “Comments on ‘The isotope effect in the spectrum of thorium,’ ” J. Opt. Soc. Am. 54, 267–268 (1964).
    [Crossref]
  6. G. L. Stukenbroeker and J. R. McNally, “Isotope shifts in thorium—Th 230 and Th 232,” J. Opt. Soc. Am. 43, 36–41 (1953).
    [Crossref]
  7. J. W. Brault, “Rapid scan high resolution Fourier transform spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (1976).
  8. B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” (February1983).
  9. R. Zalubas, “Energy levels, classified lines, and Zeeman effect of neutral thorium,” J. Res. Nat. Bur. Stand. U.S. 80A, 221–358 (1976).
    [Crossref]
  10. R. Zalubas and C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. U.S. 78A, 163–246 (1974).
    [Crossref]
  11. B. A. Palmer and R. Engleman, “A new program for the least squares calculation of atomic energy levels,” (1983).
  12. A. Giacchetti, J. Blaise, C. H. Corliss, and R. Zalubas, “Proposed secondary wavelength standards and line classifications in thorium spectra between 0.9 and 3 μ m,” J. Res. Nat. Bur. Stand. U.S. 78A, 247–281 (1974).
    [Crossref]
  13. R. Zalubas, “Present state of analysis of the first spectrum of thorium (Th I),” J. Opt. Soc. Am. 58, 1195–1199 (1968).
    [Crossref]
  14. J. Blaise and A. Steudel, “Isotopieverschiebungskonstanten von Th, U, Pu, und Am,” Z. Phys. 209, 311–328 (1968).
    [Crossref]
  15. K. Rajnak and M. Fred, “Correlation of isotope shifts with |Ψ(0)|2 for actinide configurations,” J. Opt. Soc. Am. 67, 1314–1323 (1977).
    [Crossref]

1980 (1)

1977 (1)

1976 (2)

J. W. Brault, “Rapid scan high resolution Fourier transform spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (1976).

R. Zalubas, “Energy levels, classified lines, and Zeeman effect of neutral thorium,” J. Res. Nat. Bur. Stand. U.S. 80A, 221–358 (1976).
[Crossref]

1974 (2)

R. Zalubas and C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. U.S. 78A, 163–246 (1974).
[Crossref]

A. Giacchetti, J. Blaise, C. H. Corliss, and R. Zalubas, “Proposed secondary wavelength standards and line classifications in thorium spectra between 0.9 and 3 μ m,” J. Res. Nat. Bur. Stand. U.S. 78A, 247–281 (1974).
[Crossref]

1969 (1)

V. N. Egorov, M. F. Korintskaya, and V. K. Markov, “Isolation of the isotope thorium-229 and investigation of its spectroscopic properties,” Radiokhim. 11, 542–546 (1969).

1968 (2)

R. Zalubas, “Present state of analysis of the first spectrum of thorium (Th I),” J. Opt. Soc. Am. 58, 1195–1199 (1968).
[Crossref]

J. Blaise and A. Steudel, “Isotopieverschiebungskonstanten von Th, U, Pu, und Am,” Z. Phys. 209, 311–328 (1968).
[Crossref]

1964 (1)

1960 (1)

E. A. Vernyi and V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).

1959 (1)

E. A. Vernyi and V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).

1953 (1)

Blaise, J.

A. Giacchetti, J. Blaise, C. H. Corliss, and R. Zalubas, “Proposed secondary wavelength standards and line classifications in thorium spectra between 0.9 and 3 μ m,” J. Res. Nat. Bur. Stand. U.S. 78A, 247–281 (1974).
[Crossref]

J. Blaise and A. Steudel, “Isotopieverschiebungskonstanten von Th, U, Pu, und Am,” Z. Phys. 209, 311–328 (1968).
[Crossref]

Brault, J. W.

J. W. Brault, “Rapid scan high resolution Fourier transform spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (1976).

Charles, G. W.

Corliss, C. H.

R. Zalubas and C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. U.S. 78A, 163–246 (1974).
[Crossref]

A. Giacchetti, J. Blaise, C. H. Corliss, and R. Zalubas, “Proposed secondary wavelength standards and line classifications in thorium spectra between 0.9 and 3 μ m,” J. Res. Nat. Bur. Stand. U.S. 78A, 247–281 (1974).
[Crossref]

Egorov, V. N.

V. N. Egorov, M. F. Korintskaya, and V. K. Markov, “Isolation of the isotope thorium-229 and investigation of its spectroscopic properties,” Radiokhim. 11, 542–546 (1969).

E. A. Vernyi and V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).

E. A. Vernyi and V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).

Engleman, R.

R. Engleman and B. A. Palmer, “Precision isotope shifts for the heavy elements. I. Neutral uranium in the visible and near infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
[Crossref]

B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” (February1983).

B. A. Palmer and R. Engleman, “A new program for the least squares calculation of atomic energy levels,” (1983).

Fred, M.

Giacchetti, A.

A. Giacchetti, J. Blaise, C. H. Corliss, and R. Zalubas, “Proposed secondary wavelength standards and line classifications in thorium spectra between 0.9 and 3 μ m,” J. Res. Nat. Bur. Stand. U.S. 78A, 247–281 (1974).
[Crossref]

Korintskaya, M. F.

V. N. Egorov, M. F. Korintskaya, and V. K. Markov, “Isolation of the isotope thorium-229 and investigation of its spectroscopic properties,” Radiokhim. 11, 542–546 (1969).

Markov, V. K.

V. N. Egorov, M. F. Korintskaya, and V. K. Markov, “Isolation of the isotope thorium-229 and investigation of its spectroscopic properties,” Radiokhim. 11, 542–546 (1969).

McNally, J. R.

Palmer, B. A.

R. Engleman and B. A. Palmer, “Precision isotope shifts for the heavy elements. I. Neutral uranium in the visible and near infrared,” J. Opt. Soc. Am. 70, 308–317 (1980).
[Crossref]

B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” (February1983).

B. A. Palmer and R. Engleman, “A new program for the least squares calculation of atomic energy levels,” (1983).

Rajnak, K.

Steudel, A.

J. Blaise and A. Steudel, “Isotopieverschiebungskonstanten von Th, U, Pu, und Am,” Z. Phys. 209, 311–328 (1968).
[Crossref]

Stukenbroeker, G. L.

Vernyi, E. A.

E. A. Vernyi and V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).

E. A. Vernyi and V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).

Zalubas, R.

R. Zalubas, “Energy levels, classified lines, and Zeeman effect of neutral thorium,” J. Res. Nat. Bur. Stand. U.S. 80A, 221–358 (1976).
[Crossref]

R. Zalubas and C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. U.S. 78A, 163–246 (1974).
[Crossref]

A. Giacchetti, J. Blaise, C. H. Corliss, and R. Zalubas, “Proposed secondary wavelength standards and line classifications in thorium spectra between 0.9 and 3 μ m,” J. Res. Nat. Bur. Stand. U.S. 78A, 247–281 (1974).
[Crossref]

R. Zalubas, “Present state of analysis of the first spectrum of thorium (Th I),” J. Opt. Soc. Am. 58, 1195–1199 (1968).
[Crossref]

J. Opt. Soc. Am. (6)

J. Res. Nat. Bur. Stand. U.S. (3)

A. Giacchetti, J. Blaise, C. H. Corliss, and R. Zalubas, “Proposed secondary wavelength standards and line classifications in thorium spectra between 0.9 and 3 μ m,” J. Res. Nat. Bur. Stand. U.S. 78A, 247–281 (1974).
[Crossref]

R. Zalubas, “Energy levels, classified lines, and Zeeman effect of neutral thorium,” J. Res. Nat. Bur. Stand. U.S. 80A, 221–358 (1976).
[Crossref]

R. Zalubas and C. H. Corliss, “Energy levels and classified lines in the second spectrum of thorium (Th II),” J. Res. Nat. Bur. Stand. U.S. 78A, 163–246 (1974).
[Crossref]

Opt. Spectrosc. (2)

E. A. Vernyi and V. N. Egorov, “Isotopic shift in the spectrum of thorium Th232–Th229,” Opt. Spectrosc. 6, 170 (1959).

E. A. Vernyi and V. N. Egorov, “The isotope effect in the spectrum of thorium,” Opt. Spectrosc. 9, 367–371 (1960).

Radiokhim. (1)

V. N. Egorov, M. F. Korintskaya, and V. K. Markov, “Isolation of the isotope thorium-229 and investigation of its spectroscopic properties,” Radiokhim. 11, 542–546 (1969).

Z. Phys. (1)

J. Blaise and A. Steudel, “Isotopieverschiebungskonstanten von Th, U, Pu, und Am,” Z. Phys. 209, 311–328 (1968).
[Crossref]

Other (2)

B. A. Palmer and R. Engleman, “A new program for the least squares calculation of atomic energy levels,” (1983).

B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” (February1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Examples of the 232Th/230Th FTS spectra. The three isotopic doublets of thorium at the left are unreversed. The strong line at 20620 cm−1 is slightly reversed and is a low-lying transition [3687(J = (2)–24307(J = 2)]. The Th i doublet at the right has a calculated isotope shift of 56 mK and thus is unresolved.

Fig. 2
Fig. 2

Examples of reversed (right) and double-reversed (left) isotopic doublets in Th i. The left doublet is a ground-state line [0(J = 2)–23741(J = 1)] with a calculated isotope shift of −430 mK. The right doublet is [31537(J = 3)–7795(J = 4)] with a calculated isotope shift of −275 mK.

Fig. 3
Fig. 3

Correlation of Th i level isotope shift with configuration assignments from Ref. 9.

Tables (2)

Tables Icon

Table 1 Even-Level Isotope Shifts of Th ia

Tables Icon

Table 2 Odd-Level Isotope Shifts of Th ia