Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Intracavity resonant degenerate four-wave mixing: bistability in phase conjugation

Not Accessible

Your library or personal account may give you access

Abstract

A general formalism is developed to study intracavity phase conjugation through resonant degenerate four-wave mixing. The effects of spatial hole burning, arising from interference of the counterpropagating pump waves, are fully incorporated. The analysis is applied to discuss intracavity phase conjugation in nonlinear media that can be modeled using either a two-level system or a Λ-type three-level system. In both cases, the phase-conjugate reflectivity exhibits bistability for an appropriate choice of the input parameters. For a two-level system, the tuning characteristics of the Fabry–Perot cavity significantly affect the phase-conjugate spectrum that displays hysteresis when the cavity is detuned from the applied laser frequency.

© 1983 Optical Society of America

Full Article  |  PDF Article
More Like This
Degenerate four-wave mixing in semiconductor-doped glasses

R. K. Jain and R. C. Lind
J. Opt. Soc. Am. 73(5) 647-653 (1983)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved