Abstract

We report degenerate four-wave mixing (DFWM) of visible radiation in borosilicate glasses doped with crystallites of the mixed semiconductor CdSxSe1−x. These semiconductor-doped glasses—available commercially in the form of colored glass filters—exhibit third-order nonlinearities of ~10−9–10−8 esu for DFWM with short (~10-nsec) laser pulses at various visible wavelengths. Our studies on the temporal decay of the transient gratings indicate that the nonlinearity is not thermal in origin but may be attributed to the generation of a short-lived electron–hole plasma. In contrast with DFWM experiments in other semiconductors invoking gratings of optically generated carriers (or other mobile particles), we report unique diffusion-independent decay of the gratings in these glasses; this is deduced from the dependence of the intensity and polarization of the DFWM signal on the polarization combinations of the input beams. Finally, we report detailed data on the aberration-correction properties of these isotropic glasses.

© 1983 Optical Society of America

Full Article  |  PDF Article
Related Articles
Ultraviolet irradiation effect on the third-order optical nonlinearity of CuCl-microcrystallite-doped glass

Yuki Kondo, Yutaka Kuroiwa, Naoki Sugimoto, Tsuneo Manabe, Setsuro Ito, Toshinobu Yoko, and Arao Nakamura
J. Opt. Soc. Am. B 17(4) 548-554 (2000)

New results on optical phase conjugation in semiconductor-doped glasses

P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis
J. Opt. Soc. Am. B 4(1) 5-13 (1987)

Free-carrier-induced third-order optical nonlinearities in semiconductors

S. Y. Auyang and P. A. Wolff
J. Opt. Soc. Am. B 6(4) 595-605 (1989)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Jain and J. B. Klein, “Degenerate four-wave mixing near the band gap of semiconductors,” Appl. Phys. Lett. 35, 454–456 (1979).
    [Crossref]
  2. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
    [Crossref]
  3. R. K. Jain, M. B. Klein, and R. C. Lind, “High-efficiency degenerate four-wave mixing of 1.06-μ m radiation in silicon,” Opt. Lett. 4, 328–330 (1979).
    [Crossref] [PubMed]
  4. D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
    [Crossref]
  5. V. Kreminitskii, S. Odoulov, and M. Soskin, “Backward degenerate four-wave mixing in CdTe,” Phys. Status Solidi A 57, K71–K74 (1980).
    [Crossref]
  6. R. K. Jain and D. G. Steel, “Degenerate four-wave mixing of 10.6-μ m radiation in HgCdTe,” Appl. Phys. Lett. 37, 1–3 (1980).
    [Crossref]
  7. M. A. Khan, P. W. Kruse, and J. F. Ready, “Optical phase conjugation in Hg1−x Cdx Te,” Opt. Lett. 5, 261–263 (1980).
    [Crossref] [PubMed]
  8. D. A. B. Miller, R. G. Harrison, A. M. Johnston, C. T. Seaton, and S. D. Smith, “Degenerate four-wave mixing in InSb at 5°K,” Opt. Commun. 32, 478–480 (1980).
    [Crossref]
  9. D. E. Watkins, C. R. Phipps, and S. J. Thomas, “Observation of amplified reflection through degenerate four-wave mixing at CO2laser wavelengths in germanium,” Opt. Lett. 6, 76–78 (1981).
    [Crossref] [PubMed]
  10. R. K. Jain and D. G. Steel, “Large optical nonlinearities and cw degenerate four-wave mixing in HgCdTe,” Opt. Commun. 43, 72–77 (1982).
    [Crossref]
  11. M. A. Khan, R. L. H. Bennett, and P. W. Kruse, “Bandgap-resonant optical phase conjugation in n-type Hg1−x Cdx Te at 10.6 μ m,” Opt. Lett. 6, 560–562 (1981).
    [Crossref] [PubMed]
  12. R. K. Jain, “Degenerate four-wave mixing in semoconductors: application to phase conjugation and to picosecond resolved studies of transient carrier dynamics,” Opt. Eng. 21, 199–218 (1982); R. K. Jain and M. B. Klein, “DFWM in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).
    [Crossref]
  13. Such glasses are readily available from manufacturers of colored glasses as “sharp-cut” color filters, with numerous choices of cut wavelengths. Two of the manufacturers and their glasses are Corning Glass Industries, Corning, New York 14830: glasses nos. 2403 to 2434, 3480 to 3486, and 3384 to 3391; Schott Optical Glass, Inc., Duryea, Pennsylvania 18642: glasses nos. WG 295 to WG 360, GG 375 to GG 475, OG 515 to OG 590, and RG 610 to RG 715.
  14. A preliminary description of some of our early observations on DFWM in semiconductor-doped glasses was presented at the Eleventh International Quantum Electronics Conference, Boston, Massachusetts, 1980.
  15. Similar glasses were used by Eichler et al. for transient holography: H. Eichler, G. Enterlein, P. Glozbach, J. Munschau, and H. Stahl, “Power requirements and resolution of real-time holograms in saturable absorbers and absorbing liquids,” Appl. Opt. 11, 372–375 (1972); however, in this work the glasses were viewed simply as saturable absorbers, and no connection was made to the semiconductor nature of the material or to the physical origin of the nonlinearity.
    [Crossref] [PubMed]
  16. CdSx Se1−x-doped glasses from Corning: Nos. 2403 to 2434 and 3480 to 3486; from Schott: nos. RG 610 to RG 715 and OG 515 to OG 590.
  17. H. P. Rooksby, “Color of selenium ruby glasses,” J. Soc. Glass Technol. 16, 171–179 (1932).
  18. G. Schmidt, “Optical studies of selenium ruby glass,” presented at Symposium on Colored Glasses at the International Congress on Glass, Prague, Czechoslovakia, 1967.
  19. R. W. Smith, “Low-field electroluminescence in insulating crystals of CdS,” Phys. Rev. 105, 900–904 (1957).
    [Crossref]
  20. For this calculation, we assumed an absorption coefficient of 3 cm−1(measured; see also Ref. 21), a reduced effective electron-hole mass of 0.16 m0(see Ref. 22), a refractive index of 2.6,23 and a bandgap of 2.41 eV.24
  21. D. Dutton, “Fundamental absorption edge in CdS,” Phys. Rev. 112, 785–792 (1958).
    [Crossref]
  22. J. J. Hopfield, “Exciton states and band structure in CdS and CdSe,” J. Appl. Phys. 32, 2277–2281 (1961); J. J. Hopfield and D. G. Thomas, in Proceedings of International Conference on Semiconductor Physics (Academic, New York, 1961), pp. 332–334.
    [Crossref]
  23. S. J. Czyak, W. M. Baker, R. C. Crane, and J. B. Howe, “Refractive indexes of single synthetic zinc sulfide and cadmium sulfide crystals,” J. Opt. Soc. Am. 47, 240–243 (1957).
    [Crossref]
  24. M. Balkanski and R. D. Waldron, “Internal photoeffect and exciton diffusion in chromium and zinc sulfides,” Phys. Rev. 112, 123–135 (1958).
    [Crossref]
  25. G. Bret and F. Gires, “Giant-pulse laser and light amplifier using variable transmission coefficient glasses as light switches,” Appl. Phys. Lett. 4, 175–176 (1964).
    [Crossref]
  26. This is in strong contrast with our observations in dye solutions, in which the DFWM signals are often dominated by thermal gratings with slow decay times.
  27. D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave mixing,” Appl. Phys. Lett. 35, 376–379 (1979).
    [Crossref]
  28. R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
    [Crossref]
  29. This novel diffusion-independent behavior, leading to comparable DFWM signals from both gratings, permits polarization manipulation of the DFWM signal (see Ref. 27) by the control of either the backward or the forward pump, a feature of great importance for Boolean-logic processing of optical signals with DFWM (see Ref. 33).
  30. T. R. O’Meara, “Boolean-logic processing with four-wave mixing and applications,” J. Opt. Soc. Am. (to be published).
  31. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [Crossref]
  32. Possible candidate glasses include those used for sharp-cut optical filters in the green to near-ultraviolet spectral ranges, such as Corning glasses nos. 3384 to 3391 and Schott glasses nos. WG 295 to WG 360 and GG 375 to GG 475; however, the exact compounds present in these glasses are unknown to us.
  33. V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2, 4–6 (1978), and Ref. 10 therein.
    [Crossref] [PubMed]

1982 (2)

R. K. Jain and D. G. Steel, “Large optical nonlinearities and cw degenerate four-wave mixing in HgCdTe,” Opt. Commun. 43, 72–77 (1982).
[Crossref]

R. K. Jain, “Degenerate four-wave mixing in semoconductors: application to phase conjugation and to picosecond resolved studies of transient carrier dynamics,” Opt. Eng. 21, 199–218 (1982); R. K. Jain and M. B. Klein, “DFWM in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).
[Crossref]

1981 (2)

1980 (4)

V. Kreminitskii, S. Odoulov, and M. Soskin, “Backward degenerate four-wave mixing in CdTe,” Phys. Status Solidi A 57, K71–K74 (1980).
[Crossref]

R. K. Jain and D. G. Steel, “Degenerate four-wave mixing of 10.6-μ m radiation in HgCdTe,” Appl. Phys. Lett. 37, 1–3 (1980).
[Crossref]

M. A. Khan, P. W. Kruse, and J. F. Ready, “Optical phase conjugation in Hg1−x Cdx Te,” Opt. Lett. 5, 261–263 (1980).
[Crossref] [PubMed]

D. A. B. Miller, R. G. Harrison, A. M. Johnston, C. T. Seaton, and S. D. Smith, “Degenerate four-wave mixing in InSb at 5°K,” Opt. Commun. 32, 478–480 (1980).
[Crossref]

1979 (6)

R. K. Jain and J. B. Klein, “Degenerate four-wave mixing near the band gap of semiconductors,” Appl. Phys. Lett. 35, 454–456 (1979).
[Crossref]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

R. K. Jain, M. B. Klein, and R. C. Lind, “High-efficiency degenerate four-wave mixing of 1.06-μ m radiation in silicon,” Opt. Lett. 4, 328–330 (1979).
[Crossref] [PubMed]

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[Crossref]

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave mixing,” Appl. Phys. Lett. 35, 376–379 (1979).
[Crossref]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
[Crossref]

1978 (1)

1972 (1)

1969 (1)

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

1964 (1)

G. Bret and F. Gires, “Giant-pulse laser and light amplifier using variable transmission coefficient glasses as light switches,” Appl. Phys. Lett. 4, 175–176 (1964).
[Crossref]

1961 (1)

J. J. Hopfield, “Exciton states and band structure in CdS and CdSe,” J. Appl. Phys. 32, 2277–2281 (1961); J. J. Hopfield and D. G. Thomas, in Proceedings of International Conference on Semiconductor Physics (Academic, New York, 1961), pp. 332–334.
[Crossref]

1958 (2)

D. Dutton, “Fundamental absorption edge in CdS,” Phys. Rev. 112, 785–792 (1958).
[Crossref]

M. Balkanski and R. D. Waldron, “Internal photoeffect and exciton diffusion in chromium and zinc sulfides,” Phys. Rev. 112, 123–135 (1958).
[Crossref]

1957 (2)

1932 (1)

H. P. Rooksby, “Color of selenium ruby glasses,” J. Soc. Glass Technol. 16, 171–179 (1932).

Abrams, R. L.

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
[Crossref]

Baker, W. M.

Balkanski, M.

M. Balkanski and R. D. Waldron, “Internal photoeffect and exciton diffusion in chromium and zinc sulfides,” Phys. Rev. 112, 123–135 (1958).
[Crossref]

Bennett, R. L. H.

Bret, G.

G. Bret and F. Gires, “Giant-pulse laser and light amplifier using variable transmission coefficient glasses as light switches,” Appl. Phys. Lett. 4, 175–176 (1964).
[Crossref]

Crane, R. C.

Czyak, S. J.

Dutton, D.

D. Dutton, “Fundamental absorption edge in CdS,” Phys. Rev. 112, 785–792 (1958).
[Crossref]

Eichler, H.

Enterlein, G.

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Gires, F.

G. Bret and F. Gires, “Giant-pulse laser and light amplifier using variable transmission coefficient glasses as light switches,” Appl. Phys. Lett. 4, 175–176 (1964).
[Crossref]

Giuliano, C. R.

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
[Crossref]

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave mixing,” Appl. Phys. Lett. 35, 376–379 (1979).
[Crossref]

V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2, 4–6 (1978), and Ref. 10 therein.
[Crossref] [PubMed]

Glozbach, P.

Gossard, A. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Harrison, R. G.

D. A. B. Miller, R. G. Harrison, A. M. Johnston, C. T. Seaton, and S. D. Smith, “Degenerate four-wave mixing in InSb at 5°K,” Opt. Commun. 32, 478–480 (1980).
[Crossref]

Hopfield, J. J.

J. J. Hopfield, “Exciton states and band structure in CdS and CdSe,” J. Appl. Phys. 32, 2277–2281 (1961); J. J. Hopfield and D. G. Thomas, in Proceedings of International Conference on Semiconductor Physics (Academic, New York, 1961), pp. 332–334.
[Crossref]

Howe, J. B.

Jain, R. K.

R. K. Jain, “Degenerate four-wave mixing in semoconductors: application to phase conjugation and to picosecond resolved studies of transient carrier dynamics,” Opt. Eng. 21, 199–218 (1982); R. K. Jain and M. B. Klein, “DFWM in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).
[Crossref]

R. K. Jain and D. G. Steel, “Large optical nonlinearities and cw degenerate four-wave mixing in HgCdTe,” Opt. Commun. 43, 72–77 (1982).
[Crossref]

R. K. Jain and D. G. Steel, “Degenerate four-wave mixing of 10.6-μ m radiation in HgCdTe,” Appl. Phys. Lett. 37, 1–3 (1980).
[Crossref]

R. K. Jain and J. B. Klein, “Degenerate four-wave mixing near the band gap of semiconductors,” Appl. Phys. Lett. 35, 454–456 (1979).
[Crossref]

R. K. Jain, M. B. Klein, and R. C. Lind, “High-efficiency degenerate four-wave mixing of 1.06-μ m radiation in silicon,” Opt. Lett. 4, 328–330 (1979).
[Crossref] [PubMed]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
[Crossref]

Johnston, A.

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[Crossref]

Johnston, A. M.

D. A. B. Miller, R. G. Harrison, A. M. Johnston, C. T. Seaton, and S. D. Smith, “Degenerate four-wave mixing in InSb at 5°K,” Opt. Commun. 32, 478–480 (1980).
[Crossref]

Khan, M. A.

Klein, J. B.

R. K. Jain and J. B. Klein, “Degenerate four-wave mixing near the band gap of semiconductors,” Appl. Phys. Lett. 35, 454–456 (1979).
[Crossref]

Klein, M. B.

R. K. Jain, M. B. Klein, and R. C. Lind, “High-efficiency degenerate four-wave mixing of 1.06-μ m radiation in silicon,” Opt. Lett. 4, 328–330 (1979).
[Crossref] [PubMed]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

Kreminitskii, V.

V. Kreminitskii, S. Odoulov, and M. Soskin, “Backward degenerate four-wave mixing in CdTe,” Phys. Status Solidi A 57, K71–K74 (1980).
[Crossref]

Kruse, P. W.

Lam, J. F.

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave mixing,” Appl. Phys. Lett. 35, 376–379 (1979).
[Crossref]

Lind, R. C.

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave mixing,” Appl. Phys. Lett. 35, 376–379 (1979).
[Crossref]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
[Crossref]

R. K. Jain, M. B. Klein, and R. C. Lind, “High-efficiency degenerate four-wave mixing of 1.06-μ m radiation in silicon,” Opt. Lett. 4, 328–330 (1979).
[Crossref] [PubMed]

McCall, S. L.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, R. G. Harrison, A. M. Johnston, C. T. Seaton, and S. D. Smith, “Degenerate four-wave mixing in InSb at 5°K,” Opt. Commun. 32, 478–480 (1980).
[Crossref]

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[Crossref]

Munschau, J.

O’Meara, T. R.

T. R. O’Meara, “Boolean-logic processing with four-wave mixing and applications,” J. Opt. Soc. Am. (to be published).

Odoulov, S.

V. Kreminitskii, S. Odoulov, and M. Soskin, “Backward degenerate four-wave mixing in CdTe,” Phys. Status Solidi A 57, K71–K74 (1980).
[Crossref]

Passner, A.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Phipps, C. R.

Ready, J. F.

Rooksby, H. P.

H. P. Rooksby, “Color of selenium ruby glasses,” J. Soc. Glass Technol. 16, 171–179 (1932).

Schmidt, G.

G. Schmidt, “Optical studies of selenium ruby glass,” presented at Symposium on Colored Glasses at the International Congress on Glass, Prague, Czechoslovakia, 1967.

Seaton, C. T.

D. A. B. Miller, R. G. Harrison, A. M. Johnston, C. T. Seaton, and S. D. Smith, “Degenerate four-wave mixing in InSb at 5°K,” Opt. Commun. 32, 478–480 (1980).
[Crossref]

Smith, R. W.

R. W. Smith, “Low-field electroluminescence in insulating crystals of CdS,” Phys. Rev. 105, 900–904 (1957).
[Crossref]

Smith, S. D.

D. A. B. Miller, R. G. Harrison, A. M. Johnston, C. T. Seaton, and S. D. Smith, “Degenerate four-wave mixing in InSb at 5°K,” Opt. Commun. 32, 478–480 (1980).
[Crossref]

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[Crossref]

Soskin, M.

V. Kreminitskii, S. Odoulov, and M. Soskin, “Backward degenerate four-wave mixing in CdTe,” Phys. Status Solidi A 57, K71–K74 (1980).
[Crossref]

Stahl, H.

Steel, D. G.

R. K. Jain and D. G. Steel, “Large optical nonlinearities and cw degenerate four-wave mixing in HgCdTe,” Opt. Commun. 43, 72–77 (1982).
[Crossref]

R. K. Jain and D. G. Steel, “Degenerate four-wave mixing of 10.6-μ m radiation in HgCdTe,” Appl. Phys. Lett. 37, 1–3 (1980).
[Crossref]

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave mixing,” Appl. Phys. Lett. 35, 376–379 (1979).
[Crossref]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
[Crossref]

Thomas, S. J.

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Waldron, R. D.

M. Balkanski and R. D. Waldron, “Internal photoeffect and exciton diffusion in chromium and zinc sulfides,” Phys. Rev. 112, 123–135 (1958).
[Crossref]

Wang, V.

Watkins, D. E.

Wiegmann, W.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

R. K. Jain and J. B. Klein, “Degenerate four-wave mixing near the band gap of semiconductors,” Appl. Phys. Lett. 35, 454–456 (1979).
[Crossref]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[Crossref]

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[Crossref]

R. K. Jain and D. G. Steel, “Degenerate four-wave mixing of 10.6-μ m radiation in HgCdTe,” Appl. Phys. Lett. 37, 1–3 (1980).
[Crossref]

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave mixing,” Appl. Phys. Lett. 35, 376–379 (1979).
[Crossref]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Giuliano, and R. K. Jain, “Phase conjugation at 10.6 μ m by resonantly enhanced degenerate four-wave mixing,” Appl. Phys. Lett. 34, 457–459 (1979).
[Crossref]

G. Bret and F. Gires, “Giant-pulse laser and light amplifier using variable transmission coefficient glasses as light switches,” Appl. Phys. Lett. 4, 175–176 (1964).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[Crossref]

J. Appl. Phys. (1)

J. J. Hopfield, “Exciton states and band structure in CdS and CdSe,” J. Appl. Phys. 32, 2277–2281 (1961); J. J. Hopfield and D. G. Thomas, in Proceedings of International Conference on Semiconductor Physics (Academic, New York, 1961), pp. 332–334.
[Crossref]

J. Opt. Soc. Am. (1)

J. Soc. Glass Technol. (1)

H. P. Rooksby, “Color of selenium ruby glasses,” J. Soc. Glass Technol. 16, 171–179 (1932).

Opt. Commun. (2)

R. K. Jain and D. G. Steel, “Large optical nonlinearities and cw degenerate four-wave mixing in HgCdTe,” Opt. Commun. 43, 72–77 (1982).
[Crossref]

D. A. B. Miller, R. G. Harrison, A. M. Johnston, C. T. Seaton, and S. D. Smith, “Degenerate four-wave mixing in InSb at 5°K,” Opt. Commun. 32, 478–480 (1980).
[Crossref]

Opt. Eng. (1)

R. K. Jain, “Degenerate four-wave mixing in semoconductors: application to phase conjugation and to picosecond resolved studies of transient carrier dynamics,” Opt. Eng. 21, 199–218 (1982); R. K. Jain and M. B. Klein, “DFWM in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983).
[Crossref]

Opt. Lett. (5)

Phys. Rev. (3)

D. Dutton, “Fundamental absorption edge in CdS,” Phys. Rev. 112, 785–792 (1958).
[Crossref]

M. Balkanski and R. D. Waldron, “Internal photoeffect and exciton diffusion in chromium and zinc sulfides,” Phys. Rev. 112, 123–135 (1958).
[Crossref]

R. W. Smith, “Low-field electroluminescence in insulating crystals of CdS,” Phys. Rev. 105, 900–904 (1957).
[Crossref]

Phys. Status Solidi A (1)

V. Kreminitskii, S. Odoulov, and M. Soskin, “Backward degenerate four-wave mixing in CdTe,” Phys. Status Solidi A 57, K71–K74 (1980).
[Crossref]

Other (9)

Such glasses are readily available from manufacturers of colored glasses as “sharp-cut” color filters, with numerous choices of cut wavelengths. Two of the manufacturers and their glasses are Corning Glass Industries, Corning, New York 14830: glasses nos. 2403 to 2434, 3480 to 3486, and 3384 to 3391; Schott Optical Glass, Inc., Duryea, Pennsylvania 18642: glasses nos. WG 295 to WG 360, GG 375 to GG 475, OG 515 to OG 590, and RG 610 to RG 715.

A preliminary description of some of our early observations on DFWM in semiconductor-doped glasses was presented at the Eleventh International Quantum Electronics Conference, Boston, Massachusetts, 1980.

G. Schmidt, “Optical studies of selenium ruby glass,” presented at Symposium on Colored Glasses at the International Congress on Glass, Prague, Czechoslovakia, 1967.

CdSx Se1−x-doped glasses from Corning: Nos. 2403 to 2434 and 3480 to 3486; from Schott: nos. RG 610 to RG 715 and OG 515 to OG 590.

For this calculation, we assumed an absorption coefficient of 3 cm−1(measured; see also Ref. 21), a reduced effective electron-hole mass of 0.16 m0(see Ref. 22), a refractive index of 2.6,23 and a bandgap of 2.41 eV.24

This novel diffusion-independent behavior, leading to comparable DFWM signals from both gratings, permits polarization manipulation of the DFWM signal (see Ref. 27) by the control of either the backward or the forward pump, a feature of great importance for Boolean-logic processing of optical signals with DFWM (see Ref. 33).

T. R. O’Meara, “Boolean-logic processing with four-wave mixing and applications,” J. Opt. Soc. Am. (to be published).

Possible candidate glasses include those used for sharp-cut optical filters in the green to near-ultraviolet spectral ranges, such as Corning glasses nos. 3384 to 3391 and Schott glasses nos. WG 295 to WG 360 and GG 375 to GG 475; however, the exact compounds present in these glasses are unknown to us.

This is in strong contrast with our observations in dye solutions, in which the DFWM signals are often dominated by thermal gratings with slow decay times.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Room-temperature transmission spectra, neglecting reflection losses, for 2-mm thick samples of a representative set of CdSxSe1−x-doped glasses. For the five curves shown, the compositions and corresponding Corning Glass numbers are a, x ~ 0.9 (#3484/CS3-68); b, x ~ 0.82 (#3482/CS3-67); c, x ~ 0.7 (#2434/CS2-73); d, x ~ 06 (#2418/CS2-62); e, x ~ 0.5 (#2404/CS2-59).

Fig. 2
Fig. 2

Experimental arrangement used. Polarization elements, used to vary the polarizations of the various input beams (p, f, b), are omitted here for clarity. The reference and conjugate signals were monitored on a fast ITT photodiode.

Fig. 3
Fig. 3

Peak-power reflectivity of the DFWM signal versus mean pump intensity [(IfIb)1/2] for reference CdS sample.

Fig. 4
Fig. 4

Peak-power DFWM reflectivity versus pump intensity for 2-mm-thick sample of CdS0.9Se0.1 in glass (Corning Glass no. 3484/color filter no. CS3-68).

Fig. 5
Fig. 5

Relative intensities of the CdSxSe1−x glass and the CdS crystal for various input polarization combinations, depicting the relative magnitude of the various individual terms in the third-order polarization density. For these data, If = Ib ≃ 50 MW/cm2.

Fig. 6
Fig. 6

Schematic illustration of the microscopic structure of the CdSxSe1−x-doped glass and its relation to the carrier gratings produced by interference of the pump and probe beams. The shaded regions represent crystallites with a high density of carriers.

Fig. 7
Fig. 7

Far-field photographs illustrating aberration correction by use of DFWM phase conjugation of 694.3-nm radiation in Schott RG 695 glass.

Fig. 8
Fig. 8

Far-field intensity profiles of the reference, aberrated (with lens and random aberrator), and phase-conjugate beams. The intensity profiles were obtained by a point-by-point photographic technique.

Tables (1)

Tables Icon

Table 1 Representative Choices of Wavelengths, Corresponding CdSxSe1−x Glasses, and Third-Order Susceptibilities Measured by DFWM

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ eff ( 3 ) ( ω ) = η α ( ω ) c e 2 τ L 16 π m e h * ω 3 ( ω g 2 ω g 2 - ω 2 ) ,
P ( 3 ) = A f p ( E ¯ f · E ¯ p * ) E ¯ b + A b p ( E ¯ b · E ¯ p * ) E ¯ f e i ϕ 1 + B ( E ¯ f · E ¯ b ) E ¯ p * e i ϕ 2 .