Abstract

The problem of designing a flat, aspheric, holographic optical element that images a finite set of input wave fronts into a finite set of output wave fronts is rigorously analyzed. The optimum phase transfer function of the holographic optical element is analytically determined. The optimum phase transfer function is defined as the one for which the element has minimum mean-squared wave-front error averaged over the set of input wave fronts. It is also shown that in general it may not be possible to obtain a low value for this average mean-squared wave-front error by using a single holographic element. Furthermore, the performance trade-off of spherical aberration, coma, and astigmatism versus geometric distortion is clearly indicated by example.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription