Abstract

A novel two-wavelength one-path nonlinear interferometer is used to measure refractive-index dispersion for a number of molecular gases. Δn3ω is measured directly, where Δn3ω = n3ωnω with ω = 2πc/694 nm. Δn2ω was measured for these gases previously. For CH4, the results are consistent with conventional refractive-index data from the literature; for CHF3, CH3F, CF4, and SF6, these results improve refractive-index data for wavelengths shorter than 400 nm; and, for CH2F2, these results provide the only data on dispersion available to our knowledge.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Ward and D. S. Elliott, “Optical third-harmonic generation in the fluorinated methanes and sulfur hexafluoride,” J. Chem. Phys. (to be published).
  2. R. S. Finn and J. F. Ward, “Nonlinear-optical measurement of dispersion in gases,” Appl. Opt. 11, 2103–2104 (1972).
    [Crossref] [PubMed]
  3. G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19, 556–559 (1967); J. F. Ward and G. H. C. New, “Optical third-harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
    [Crossref]
  4. J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases (Clarendon, Oxford, 1969).
  5. S. Friberg, as reported in Zahlenwerte und Funktionen, H. H. Landolt and R. Börnstein, ed. (Springer-Verlag, Berlin, 1962), Band II, Teil 8, pp. 6-884, 6-885.
  6. H. E. Watson and K. L. Ramaswamy, “The refractive index dispersion and polarization of gases,” Proc. R. Soc. Lond. Ser. A 156, 144–157 (1936).
    [Crossref]
  7. K. L. Ramaswamy, “Refractive indices and dispersions of gases and vapours,” Proc. Ind. Acad. Sci. Sect. 4, 675–686 (1936).
  8. K. L. Ramaswamy, “Refractive indices and dispersions of volatile compounds of fluorine and boron,” Proc. Ind. Acad. Sci. Sect. 2, 630–636 (1935).
  9. J. F. Ward and I. J. Bigio, “Molecular second- and third-order polarizabilities from measurements of second-harmonic generation in gases,” Phys. Rev. A 11, 60–66 (1975) (the values reported here are from Ref. 2 but have been corrected for the nonideal behavior of the gas); C. K. Miller and J. F. Ward, “Measurements of nonlinear optical polarizabilities for some halogenated methanes: the role of bond–bond interactions,” Phys. Rev. A 16, 1179–1185 (1977); J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826–833 (1979).
    [Crossref]
  10. Discussion of various dispersion formulas and relations to quantum-mechanical expressions may be found, for example, in C. R. Mansfield and E. R. Peck, “Dispersion of helium,” J. Opt. Soc. Am. 59, 199 (1969).
    [Crossref]
  11. Dupont Freon Tech. Bull. B-32, Freon Refrigerants, (E. I. DuPont de Nemours & Co.Wilmington, Del., 1963).

1975 (1)

J. F. Ward and I. J. Bigio, “Molecular second- and third-order polarizabilities from measurements of second-harmonic generation in gases,” Phys. Rev. A 11, 60–66 (1975) (the values reported here are from Ref. 2 but have been corrected for the nonideal behavior of the gas); C. K. Miller and J. F. Ward, “Measurements of nonlinear optical polarizabilities for some halogenated methanes: the role of bond–bond interactions,” Phys. Rev. A 16, 1179–1185 (1977); J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826–833 (1979).
[Crossref]

1972 (1)

1969 (1)

1967 (1)

G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19, 556–559 (1967); J. F. Ward and G. H. C. New, “Optical third-harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
[Crossref]

1936 (2)

H. E. Watson and K. L. Ramaswamy, “The refractive index dispersion and polarization of gases,” Proc. R. Soc. Lond. Ser. A 156, 144–157 (1936).
[Crossref]

K. L. Ramaswamy, “Refractive indices and dispersions of gases and vapours,” Proc. Ind. Acad. Sci. Sect. 4, 675–686 (1936).

1935 (1)

K. L. Ramaswamy, “Refractive indices and dispersions of volatile compounds of fluorine and boron,” Proc. Ind. Acad. Sci. Sect. 2, 630–636 (1935).

Bigio, I. J.

J. F. Ward and I. J. Bigio, “Molecular second- and third-order polarizabilities from measurements of second-harmonic generation in gases,” Phys. Rev. A 11, 60–66 (1975) (the values reported here are from Ref. 2 but have been corrected for the nonideal behavior of the gas); C. K. Miller and J. F. Ward, “Measurements of nonlinear optical polarizabilities for some halogenated methanes: the role of bond–bond interactions,” Phys. Rev. A 16, 1179–1185 (1977); J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826–833 (1979).
[Crossref]

Dymond, J. H.

J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases (Clarendon, Oxford, 1969).

Elliott, D. S.

J. F. Ward and D. S. Elliott, “Optical third-harmonic generation in the fluorinated methanes and sulfur hexafluoride,” J. Chem. Phys. (to be published).

Finn, R. S.

Friberg, S.

S. Friberg, as reported in Zahlenwerte und Funktionen, H. H. Landolt and R. Börnstein, ed. (Springer-Verlag, Berlin, 1962), Band II, Teil 8, pp. 6-884, 6-885.

Mansfield, C. R.

New, G. H. C.

G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19, 556–559 (1967); J. F. Ward and G. H. C. New, “Optical third-harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
[Crossref]

Peck, E. R.

Ramaswamy, K. L.

H. E. Watson and K. L. Ramaswamy, “The refractive index dispersion and polarization of gases,” Proc. R. Soc. Lond. Ser. A 156, 144–157 (1936).
[Crossref]

K. L. Ramaswamy, “Refractive indices and dispersions of gases and vapours,” Proc. Ind. Acad. Sci. Sect. 4, 675–686 (1936).

K. L. Ramaswamy, “Refractive indices and dispersions of volatile compounds of fluorine and boron,” Proc. Ind. Acad. Sci. Sect. 2, 630–636 (1935).

Smith, E. B.

J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases (Clarendon, Oxford, 1969).

Ward, J. F.

J. F. Ward and I. J. Bigio, “Molecular second- and third-order polarizabilities from measurements of second-harmonic generation in gases,” Phys. Rev. A 11, 60–66 (1975) (the values reported here are from Ref. 2 but have been corrected for the nonideal behavior of the gas); C. K. Miller and J. F. Ward, “Measurements of nonlinear optical polarizabilities for some halogenated methanes: the role of bond–bond interactions,” Phys. Rev. A 16, 1179–1185 (1977); J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826–833 (1979).
[Crossref]

R. S. Finn and J. F. Ward, “Nonlinear-optical measurement of dispersion in gases,” Appl. Opt. 11, 2103–2104 (1972).
[Crossref] [PubMed]

G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19, 556–559 (1967); J. F. Ward and G. H. C. New, “Optical third-harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
[Crossref]

J. F. Ward and D. S. Elliott, “Optical third-harmonic generation in the fluorinated methanes and sulfur hexafluoride,” J. Chem. Phys. (to be published).

Watson, H. E.

H. E. Watson and K. L. Ramaswamy, “The refractive index dispersion and polarization of gases,” Proc. R. Soc. Lond. Ser. A 156, 144–157 (1936).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Phys. Rev. A (1)

J. F. Ward and I. J. Bigio, “Molecular second- and third-order polarizabilities from measurements of second-harmonic generation in gases,” Phys. Rev. A 11, 60–66 (1975) (the values reported here are from Ref. 2 but have been corrected for the nonideal behavior of the gas); C. K. Miller and J. F. Ward, “Measurements of nonlinear optical polarizabilities for some halogenated methanes: the role of bond–bond interactions,” Phys. Rev. A 16, 1179–1185 (1977); J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826–833 (1979).
[Crossref]

Phys. Rev. Lett. (1)

G. H. C. New and J. F. Ward, “Optical third-harmonic generation in gases,” Phys. Rev. Lett. 19, 556–559 (1967); J. F. Ward and G. H. C. New, “Optical third-harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
[Crossref]

Proc. Ind. Acad. Sci. Sect. (2)

K. L. Ramaswamy, “Refractive indices and dispersions of gases and vapours,” Proc. Ind. Acad. Sci. Sect. 4, 675–686 (1936).

K. L. Ramaswamy, “Refractive indices and dispersions of volatile compounds of fluorine and boron,” Proc. Ind. Acad. Sci. Sect. 2, 630–636 (1935).

Proc. R. Soc. Lond. Ser. A (1)

H. E. Watson and K. L. Ramaswamy, “The refractive index dispersion and polarization of gases,” Proc. R. Soc. Lond. Ser. A 156, 144–157 (1936).
[Crossref]

Other (4)

J. F. Ward and D. S. Elliott, “Optical third-harmonic generation in the fluorinated methanes and sulfur hexafluoride,” J. Chem. Phys. (to be published).

J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases (Clarendon, Oxford, 1969).

S. Friberg, as reported in Zahlenwerte und Funktionen, H. H. Landolt and R. Börnstein, ed. (Springer-Verlag, Berlin, 1962), Band II, Teil 8, pp. 6-884, 6-885.

Dupont Freon Tech. Bull. B-32, Freon Refrigerants, (E. I. DuPont de Nemours & Co.Wilmington, Del., 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the optics. Elements are a, aperture; f, aqueous nickel sulfate filter, l, quartz lens; pmt, 1P28 photomultiplier; w1, borosilicate glass window; w2, quartz window.

Fig. 2
Fig. 2

Third-harmonic power at the detector, P3ω, as a function of gas density (CHF3 in this case). Error bars are determined from the scatter over a set of laser shots, and the dashed line is a fit to the data.

Tables (1)

Tables Icon

Table 1 Refractive-Index Dispersion Data ΔnO3ω with Uncertainties Dominated by Gas Impurities, Compared with Values Obtained by Extrapolating Refractive-Index Data from the Literaturea

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( ρ ) = 2 π Δ n O 2 ω ρ L 3 ω / c + const . ,
I 3 ω ( ρ ) = I O cos [ ϕ ( ρ ) ] + const .
[ n O ( ω ) - 1 ] = C / [ ( Ω / 2 π c ) 2 - ( ω / 2 π c ) 2 ] .