Abstract

We present new high-resolution methods for the problem of retrieving sinusoidal processes from noisy measurements. The approach taken is by use of the so-called principal-components method, which is a singular-value-decomposition-based approximate modeling method. The low-rank property and the algebraic structure of both the data matrix and the covariance matrix (under noise-free conditions) form the basis of exact modeling methods. In a noisy environment, however, the rank property is often perturbed, and singular-value decomposition is used to obtain a low-rank approximant in factored form. The underlying algebraic structure of these factors leads naturally to least-squares estimates of the state-space parameters of the sinusoidal process. This forms the basis of the Toeplitz approximation method, which offers a robust Pisarenko-like spectral estimate from the covariance sequence. Furthermore, the principle of Pisarenko’s method is extended to harmonic retrieval directly from time-series data, which leads to a direct-data approximation method. Our simulation results indicate that favorable resolution capability (compared with existing methods) can be achieved by the above methods. The application of these principles to two-dimensional signals is also discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graph-regularized tensor robust principal component analysis for hyperspectral image denoising

Yongming Nie, Linsen Chen, Hao Zhu, Sidan Du, Tao Yue, and Xun Cao
Appl. Opt. 56(22) 6094-6102 (2017)

Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering

Rufus Fraanje, Justin Rice, Michel Verhaegen, and Niek Doelman
J. Opt. Soc. Am. A 27(11) A235-A245 (2010)

Fast and accurate 3D object recognition directly from digital holograms

Mozhdeh Seifi, Loic Denis, and Corinne Fournier
J. Opt. Soc. Am. A 30(11) 2216-2224 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (76)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription