Abstract

We have measured as a function of incident angle, for a range of critical angles between 88° and 89° and of characteristic gain depths between 41 and 96 probe wavelengths, the single-pass reflectance of a He–Ne probe beam reflected from a transverse optically pumped solution of rhodamine B. In contrast to previously reported experiments, no anomalously high reflectances were observed. The theoretical formulas for the exponentially nonuniform-gain model reproduce well the observed reflectance curves including the locations, slopes, and heights of the amplification maximum in the vicinity of critical angle. Peak amplifications of 200–300% were predicted and observed for the given experimental conditions.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cybulski and M. P. Silverman, “Investigation of light amplification by enhanced internal reflection. Part I. Theoretical reflectance and transmittance of an exponentially nonuniform gain region,” J. Opt. Soc. Am. 73, 1732–1738 (1983).
    [CrossRef]
  2. S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 565–566 (1973).
  3. M. J. Weber and M. Bass, “Frequency- and time-dependent gain characteristics of dye lasers,” J. Quantum Electron. QE-5, 175–188 (1969).
    [CrossRef]
  4. J. M. Yarborough, “Cw dye laser emission spanning the visible spectrum,” Appl. Phys. Lett. 24, 629–630 (1974).
    [CrossRef]
  5. S. A. Lebedev and B. Ya. Kogan, “Mechanism of anomalous light reflection from an inverted medium,” Opt. Spectrosc. 48, 647–649 (1980).

1983 (1)

1980 (1)

S. A. Lebedev and B. Ya. Kogan, “Mechanism of anomalous light reflection from an inverted medium,” Opt. Spectrosc. 48, 647–649 (1980).

1974 (1)

J. M. Yarborough, “Cw dye laser emission spanning the visible spectrum,” Appl. Phys. Lett. 24, 629–630 (1974).
[CrossRef]

1973 (1)

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 565–566 (1973).

1969 (1)

M. J. Weber and M. Bass, “Frequency- and time-dependent gain characteristics of dye lasers,” J. Quantum Electron. QE-5, 175–188 (1969).
[CrossRef]

Bass, M.

M. J. Weber and M. Bass, “Frequency- and time-dependent gain characteristics of dye lasers,” J. Quantum Electron. QE-5, 175–188 (1969).
[CrossRef]

Cybulski, R. F.

Kogan, B. Ya.

S. A. Lebedev and B. Ya. Kogan, “Mechanism of anomalous light reflection from an inverted medium,” Opt. Spectrosc. 48, 647–649 (1980).

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 565–566 (1973).

Lebedev, S. A.

S. A. Lebedev and B. Ya. Kogan, “Mechanism of anomalous light reflection from an inverted medium,” Opt. Spectrosc. 48, 647–649 (1980).

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 565–566 (1973).

Silverman, M. P.

Volkov, V. M.

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 565–566 (1973).

Weber, M. J.

M. J. Weber and M. Bass, “Frequency- and time-dependent gain characteristics of dye lasers,” J. Quantum Electron. QE-5, 175–188 (1969).
[CrossRef]

Yarborough, J. M.

J. M. Yarborough, “Cw dye laser emission spanning the visible spectrum,” Appl. Phys. Lett. 24, 629–630 (1974).
[CrossRef]

Appl. Phys. Lett. (1)

J. M. Yarborough, “Cw dye laser emission spanning the visible spectrum,” Appl. Phys. Lett. 24, 629–630 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quantum Electron. (1)

M. J. Weber and M. Bass, “Frequency- and time-dependent gain characteristics of dye lasers,” J. Quantum Electron. QE-5, 175–188 (1969).
[CrossRef]

Opt. Spectrosc. (2)

S. A. Lebedev, V. M. Volkov, and B. Ya. Kogan, “Value of the gain for light internally reflected from a medium with inverted population,” Opt. Spectrosc. 35, 565–566 (1973).

S. A. Lebedev and B. Ya. Kogan, “Mechanism of anomalous light reflection from an inverted medium,” Opt. Spectrosc. 48, 647–649 (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experiment: 1, dye pocket containing gain medium; 2, quartz window; 3, N2 -laser UV pump beam; 4, He–Ne 633-nm probe beam; 5, monochromator; 6, detector.

Fig. 2
Fig. 2

(a) Singlet absorption and fluorescence spectra of rhodamine B in methanol (5 × 10−5 M). (b) Stimulated-emission spectrum of rhodamine B. The probe-beam wavelength is indicated by the dashed line.

Fig. 3
Fig. 3

Reflection from the dye region with no pumping. The solid line follows from the Fresnel reflectance formulas for a transparent medium. The dashed line represents the theoretical results averaged over beam divergence. Critical angle is θc = 88.12°.

Fig. 4
Fig. 4

Reflection from an exponentially damped active region of thickness 41 wavelengths: (a) θc = 88.33°, (b) θc = 88.70°.

Fig. 5
Fig. 5

Reflection from an exponentially damped active region of thickness 58 wavelengths: (a) θc = 88.00°, (b) θc = 88.79°.

Fig. 6
Fig. 6

Reflection from an exponentially damped active region of thickness 96 wavelengths: (a) θc = 88.05°, (b) θc = 88.49°. The solid curve represents the exponential-gain model; the dashed curve represents the uniform-gain layer model.

Tables (1)

Tables Icon

Table 1 Concentrations, Pump-Power Densities, and Corresponding Thicknesses