Abstract

A new measure called color-rendering capacity is developed, by applying some of the concepts used in communication engineering, to describe another aspect of the color-rendering properties of illumination, i.e., the maximum possible number of different colors that can be displayed by a given illumination. It is a relative measure expressed as a dimensionless parameter between zero and unity, depending only on the spectral power distribution of the illumination. The computer program involved in calculating this parameter and calculated examples for several different light-source types are presented. By reference to this parameter, the prediction for four different fluorescent lamps about the extent to which a lamp can make an average chromatic environment appear colorful and bright is in general agreement with the existing observation. Another potential use of this parameter, in collaboration with the luminous efficacy, as a relevant indicator of the visual efficiency of illumination is also discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” CIE Pub. No. 13.2 (CIE, Paris, 1974).
  2. W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).
  3. W. A. Thornton, “Color discrimination index,” J. Opt. Soc. Am. 62, 191–194 (1972).
    [Crossref] [PubMed]
  4. The term “luminous efficacy” has been borrowed from the illuminating engineering discipline and is used to express the efficiency of a light source in lumens per watt.
  5. E. Schrödinger, “Theorie der pigmente von grösster leuchtkraft,” Ann. Phys. Leipzig 62, 603–622 (1920).
    [Crossref]
  6. D. L. MacAdam, “The theory of the maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 249–252 (1935).
    [Crossref]
  7. S. M. Aston and H. E. Bellchambers, “Illumination, colour rendering and visual clarity,” Light. Res. Technol. 1, 259–261 (1969).
    [Crossref]

1974 (1)

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).

1972 (1)

1969 (1)

S. M. Aston and H. E. Bellchambers, “Illumination, colour rendering and visual clarity,” Light. Res. Technol. 1, 259–261 (1969).
[Crossref]

1935 (1)

1920 (1)

E. Schrödinger, “Theorie der pigmente von grösster leuchtkraft,” Ann. Phys. Leipzig 62, 603–622 (1920).
[Crossref]

Aston, S. M.

S. M. Aston and H. E. Bellchambers, “Illumination, colour rendering and visual clarity,” Light. Res. Technol. 1, 259–261 (1969).
[Crossref]

Bellchambers, H. E.

S. M. Aston and H. E. Bellchambers, “Illumination, colour rendering and visual clarity,” Light. Res. Technol. 1, 259–261 (1969).
[Crossref]

MacAdam, D. L.

Schrödinger, E.

E. Schrödinger, “Theorie der pigmente von grösster leuchtkraft,” Ann. Phys. Leipzig 62, 603–622 (1920).
[Crossref]

Thornton, W. A.

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).

W. A. Thornton, “Color discrimination index,” J. Opt. Soc. Am. 62, 191–194 (1972).
[Crossref] [PubMed]

Ann. Phys. Leipzig (1)

E. Schrödinger, “Theorie der pigmente von grösster leuchtkraft,” Ann. Phys. Leipzig 62, 603–622 (1920).
[Crossref]

J. Illum. Eng. Soc. (1)

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4, 48–52 (1974).

J. Opt. Soc. Am. (2)

Light. Res. Technol. (1)

S. M. Aston and H. E. Bellchambers, “Illumination, colour rendering and visual clarity,” Light. Res. Technol. 1, 259–261 (1969).
[Crossref]

Other (2)

The term “luminous efficacy” has been borrowed from the illuminating engineering discipline and is used to express the efficiency of a light source in lumens per watt.

Commission Internationale de l’Eclairage, “Method of measuring and specifying colour rendering properties of light sources,” CIE Pub. No. 13.2 (CIE, Paris, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Flow chart showing major steps in the program for calculating U, V coordinates of locus points defining the maximum-chromaticity ranges obtainable with relative luminance Y = 0.0–1.0 under a given illumination.

Fig. 2
Fig. 2

The maximum chromaticity ranges obtainable with relative luminance Y = 0.0–1.0 under different light-source types.

Fig. 3
Fig. 3

Curves showing the relationships between the maximum-chromaticity range and the relative luminance Y for different light-source types.

Tables (1)

Tables Icon

Table 1 Values of CRC for Different Light-Source Typesa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y = 380 760 P ( λ ) y ¯ ( λ ) ρ ( λ ) d λ 380 760 P ( λ ) y ¯ ( λ ) d λ             ( 0 Y 1 ) ,