Abstract

Wood’s 1910 study of the UV landscape by photography [ R. W. Wood, Photog. J. 50, 329 ( 1910)] is resumed. Through a narrow-band filter at 320 nm we find uniform skies even under broken clouds, a Rayleigh veiling that attenuates distant detail, an absence of shadows, and a low reflectivity for most natural substances (except snow). Rainbows broaden by a factor of more than 2 when the UV is included. The fact that glass is opaque at 320 nm causes cities to be dark at night in this wavelength, with astronomical consequences. The aphakic human eye (i.e., the eye after removal of its crystalline lens for a cataract condition) proves to have a practical sensitivity at 320 nm so that the aphakic observer can verify the unique character of the UV scene.

© 1983 Optical Society of America

Full Article  |  PDF Article
Related Articles
Why is snow so bright?

J. J. Koenderink and W. A. Richards
J. Opt. Soc. Am. A 9(5) 643-648 (1992)

Atmospheric optics in art

Stanley David Gedzelman
Appl. Opt. 30(24) 3514-3522 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription