Abstract

During low-level halo displays, ice crystals in the atmosphere at ground level were collected and studied. I discuss the crystals in connection with the halos present at the time of collection.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, 1980).
  2. A. Dobrowolski, “Les cristaux de glace aeriens et le phenomene des halos,” Ciel Terre 28, 183–342 (1907).
  3. A. Dobrowolski, “Über neue Beobachtungen von Eiskristallen, welche die Haloerscheinungen bewirken,” Meteorol”. Z. 26, 433–437 (1909).
  4. F. Heim, “Diamantstaub und Schneekristalle in der Antarktis (Wedellsee),” Meteorol. Z. 31, 232–235 (1914).
  5. G. Liljequist, “Halo phenomena and ice crystals,” in Norwegian-British-Swedish Antarctic Expedition 1949–1952, Scientific Results (Norsk Polarinstitutt, Oslo, Norway, 1956), Vol. II, Part 2A, pp. 1–85 and plates.
  6. M. Kuhn, “Ice crystals and solar halo displays, Plateau Station, 1967,” in International Symposium on Antarctic Glaciological Exploration (International Association of Scientific Hydrology, 1970).
  7. V. Schaefer and J. Day, A Field Guide to the Atmosphere (Houghton Mifflin, Boston, Mass., 1981), Color Plate 15.
  8. T. Ohtake, “Unusual crystal in ice fog,” J. Atmos. Sci. 27, 509–511 (1970).
    [Crossref]
  9. R. Tricker, “Arcs associated with halos of unusual radii,” J. Opt. Soc. Am. 69, 1093–1100 (1979).
    [Crossref]
  10. F. Turner and L. Radke, “A rare observation of the 8° halo,” Weather 30, 150–156 (1975).
    [Crossref]
  11. M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954), p. 206.
  12. Theoretically, the boundary surface of each hollow is a surface of revolution formed as follows: Let E be the eye and let S be the light source. Choose a point O so that angle EOS is 2D, where D is the minimum deviation angle of the circular halo in question. In the plane of EOS draw the circular arc through E and S with center O. Revolve this arc about the axis ES to generate a surface. The resulting surface is the boundary of the hollow.
  13. T. Ohtake and K. Jayaweera, “Ice crystal displays from power plants,” Weather 27, 271–277 (1972).
    [Crossref]
  14. W. Tape, “Analytic foundations of halo theory,” J. Opt. Soc. Am. 70, 1175–1192 (1980).
    [Crossref]
  15. B. Currie, “Ice crystals and halo phenomena,” Mon. Weather Rev. 63, 57–58 (1935).
    [Crossref]
  16. K. Sassen, “Light pillar climatology,” Weatherwise 33, 259–262 (1980).
    [Crossref]
  17. P. Hattinga-Verschure, “Streetlamp halos,” Weather 38, 48–52 (1983).
    [Crossref]
  18. J. Mattsson, “‘Subsun’ and light-pillars of street lamps,” Weather 28, 66–68 (1973).
    [Crossref]
  19. H. Weickmann, “Formen und Bildung atmospharischer Eiskristalle,” Beitr. Phys. Atmos. 28, 12–52 (1945).

1983 (1)

P. Hattinga-Verschure, “Streetlamp halos,” Weather 38, 48–52 (1983).
[Crossref]

1980 (2)

K. Sassen, “Light pillar climatology,” Weatherwise 33, 259–262 (1980).
[Crossref]

W. Tape, “Analytic foundations of halo theory,” J. Opt. Soc. Am. 70, 1175–1192 (1980).
[Crossref]

1979 (1)

1975 (1)

F. Turner and L. Radke, “A rare observation of the 8° halo,” Weather 30, 150–156 (1975).
[Crossref]

1973 (1)

J. Mattsson, “‘Subsun’ and light-pillars of street lamps,” Weather 28, 66–68 (1973).
[Crossref]

1972 (1)

T. Ohtake and K. Jayaweera, “Ice crystal displays from power plants,” Weather 27, 271–277 (1972).
[Crossref]

1970 (1)

T. Ohtake, “Unusual crystal in ice fog,” J. Atmos. Sci. 27, 509–511 (1970).
[Crossref]

1945 (1)

H. Weickmann, “Formen und Bildung atmospharischer Eiskristalle,” Beitr. Phys. Atmos. 28, 12–52 (1945).

1935 (1)

B. Currie, “Ice crystals and halo phenomena,” Mon. Weather Rev. 63, 57–58 (1935).
[Crossref]

1914 (1)

F. Heim, “Diamantstaub und Schneekristalle in der Antarktis (Wedellsee),” Meteorol. Z. 31, 232–235 (1914).

1909 (1)

A. Dobrowolski, “Über neue Beobachtungen von Eiskristallen, welche die Haloerscheinungen bewirken,” Meteorol”. Z. 26, 433–437 (1909).

1907 (1)

A. Dobrowolski, “Les cristaux de glace aeriens et le phenomene des halos,” Ciel Terre 28, 183–342 (1907).

Currie, B.

B. Currie, “Ice crystals and halo phenomena,” Mon. Weather Rev. 63, 57–58 (1935).
[Crossref]

Day, J.

V. Schaefer and J. Day, A Field Guide to the Atmosphere (Houghton Mifflin, Boston, Mass., 1981), Color Plate 15.

Dobrowolski, A.

A. Dobrowolski, “Über neue Beobachtungen von Eiskristallen, welche die Haloerscheinungen bewirken,” Meteorol”. Z. 26, 433–437 (1909).

A. Dobrowolski, “Les cristaux de glace aeriens et le phenomene des halos,” Ciel Terre 28, 183–342 (1907).

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, 1980).

Hattinga-Verschure, P.

P. Hattinga-Verschure, “Streetlamp halos,” Weather 38, 48–52 (1983).
[Crossref]

Heim, F.

F. Heim, “Diamantstaub und Schneekristalle in der Antarktis (Wedellsee),” Meteorol. Z. 31, 232–235 (1914).

Jayaweera, K.

T. Ohtake and K. Jayaweera, “Ice crystal displays from power plants,” Weather 27, 271–277 (1972).
[Crossref]

Kuhn, M.

M. Kuhn, “Ice crystals and solar halo displays, Plateau Station, 1967,” in International Symposium on Antarctic Glaciological Exploration (International Association of Scientific Hydrology, 1970).

Liljequist, G.

G. Liljequist, “Halo phenomena and ice crystals,” in Norwegian-British-Swedish Antarctic Expedition 1949–1952, Scientific Results (Norsk Polarinstitutt, Oslo, Norway, 1956), Vol. II, Part 2A, pp. 1–85 and plates.

Mattsson, J.

J. Mattsson, “‘Subsun’ and light-pillars of street lamps,” Weather 28, 66–68 (1973).
[Crossref]

Minnaert, M.

M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954), p. 206.

Ohtake, T.

T. Ohtake and K. Jayaweera, “Ice crystal displays from power plants,” Weather 27, 271–277 (1972).
[Crossref]

T. Ohtake, “Unusual crystal in ice fog,” J. Atmos. Sci. 27, 509–511 (1970).
[Crossref]

Radke, L.

F. Turner and L. Radke, “A rare observation of the 8° halo,” Weather 30, 150–156 (1975).
[Crossref]

Sassen, K.

K. Sassen, “Light pillar climatology,” Weatherwise 33, 259–262 (1980).
[Crossref]

Schaefer, V.

V. Schaefer and J. Day, A Field Guide to the Atmosphere (Houghton Mifflin, Boston, Mass., 1981), Color Plate 15.

Tape, W.

Tricker, R.

Turner, F.

F. Turner and L. Radke, “A rare observation of the 8° halo,” Weather 30, 150–156 (1975).
[Crossref]

Weickmann, H.

H. Weickmann, “Formen und Bildung atmospharischer Eiskristalle,” Beitr. Phys. Atmos. 28, 12–52 (1945).

Beitr. Phys. Atmos. (1)

H. Weickmann, “Formen und Bildung atmospharischer Eiskristalle,” Beitr. Phys. Atmos. 28, 12–52 (1945).

Ciel Terre (1)

A. Dobrowolski, “Les cristaux de glace aeriens et le phenomene des halos,” Ciel Terre 28, 183–342 (1907).

J. Atmos. Sci. (1)

T. Ohtake, “Unusual crystal in ice fog,” J. Atmos. Sci. 27, 509–511 (1970).
[Crossref]

J. Opt. Soc. Am. (2)

Meteorol. Z. (1)

F. Heim, “Diamantstaub und Schneekristalle in der Antarktis (Wedellsee),” Meteorol. Z. 31, 232–235 (1914).

Meteorol”. Z. (1)

A. Dobrowolski, “Über neue Beobachtungen von Eiskristallen, welche die Haloerscheinungen bewirken,” Meteorol”. Z. 26, 433–437 (1909).

Mon. Weather Rev. (1)

B. Currie, “Ice crystals and halo phenomena,” Mon. Weather Rev. 63, 57–58 (1935).
[Crossref]

Weather (4)

P. Hattinga-Verschure, “Streetlamp halos,” Weather 38, 48–52 (1983).
[Crossref]

J. Mattsson, “‘Subsun’ and light-pillars of street lamps,” Weather 28, 66–68 (1973).
[Crossref]

T. Ohtake and K. Jayaweera, “Ice crystal displays from power plants,” Weather 27, 271–277 (1972).
[Crossref]

F. Turner and L. Radke, “A rare observation of the 8° halo,” Weather 30, 150–156 (1975).
[Crossref]

Weatherwise (1)

K. Sassen, “Light pillar climatology,” Weatherwise 33, 259–262 (1980).
[Crossref]

Other (6)

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, 1980).

M. Minnaert, The Nature of Light and Color in the Open Air (Dover, New York, 1954), p. 206.

Theoretically, the boundary surface of each hollow is a surface of revolution formed as follows: Let E be the eye and let S be the light source. Choose a point O so that angle EOS is 2D, where D is the minimum deviation angle of the circular halo in question. In the plane of EOS draw the circular arc through E and S with center O. Revolve this arc about the axis ES to generate a surface. The resulting surface is the boundary of the hollow.

G. Liljequist, “Halo phenomena and ice crystals,” in Norwegian-British-Swedish Antarctic Expedition 1949–1952, Scientific Results (Norsk Polarinstitutt, Oslo, Norway, 1956), Vol. II, Part 2A, pp. 1–85 and plates.

M. Kuhn, “Ice crystals and solar halo displays, Plateau Station, 1967,” in International Symposium on Antarctic Glaciological Exploration (International Association of Scientific Hydrology, 1970).

V. Schaefer and J. Day, A Field Guide to the Atmosphere (Houghton Mifflin, Boston, Mass., 1981), Color Plate 15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Some ice crystals collected during the light pillar display of (b).

Fig. 2
Fig. 2

Replica of typical crystal collected during the light pillar display in Plate IV. The other large crystals were similar to this one. Some much smaller plate crystals were also present.

Fig. 3
Fig. 3

Some crystals that produced a 22° halo that was very slightly enhanced at the top and sides.

Fig. 4
Fig. 4

Some crystals that produced the halo display of Plate V.

Fig. 5
Fig. 5

(a) and (b) Some crystals that produced a weak 22° halo, weak parhelia, a weak circumzenithal arc or portion of the 46° halo, and pillars.

Fig. 6
Fig. 6

Replicas of some crystals collected during the halo display in Plate VI. The rounding on some of the crystals is a feature of the replication.

Fig. 7
Fig. 7

Some crystals that produced no halos.

Plate III
Plate III

(Walter Tape, p. 1641). Broad parhelion seen between the photographer and the building. Such a situation establishes that the halo is being formed by crystals at low level. The sun is out of the picture at the right.

Plate IV
Plate IV

(Walter Tape, p. 1641). Light pillar display associated with Fig. 2.

Plate V
Plate V

(Walter Tape, p. 1641). Halo display associated with Fig. 4.

Plate VI
Plate VI

(Walter Tape, p. 1641). Nighttime 22° halo, parhelia, and pillar formed by nearby light source. The source is hidden by the dark oval cardboard in the center. A 15-mm lens was used in an unsuccessful attempt to record the 46° halo, which was visible to the naked eye. Replicas of the corresponding crystals are shown in Fig. 6.