Abstract

When balanced red and green lights are alternated more than 20 times per second, the perceived flicker can be reduced by advancing the green flicker about 10° of the red–green cycle. The required advance for least flicker is greatest at retinal illuminances around 1000 td and frequencies between 30 and 35 Hz. A model that predicts tuning at this frequency exists, but the tuning curve that is predicted is broader than that observed. A modified model is left for future publication. Meanwhile, other empirical properties of the advance required by green over red are described. In addition to the intensity dependence of this phase shift, we describe its dependence on intensity balance between red and green. Also, the intensity balance turns out to depend on the frequency being used, in contrast to the independence expected by Ives, the inventor of heterochromatic flicker photometry.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Ives and E. F. Kingsbury, "The theory of the flicker photometer," Philos. Mag. 28, 708–728 (1914).
  2. P. L. Walraven and H. J. Leebeek, "Phase shift of sinusoidally alternating colored stimuli," J. Opt. Soc. Am. 54, 78–82 (1964).
    [CrossRef] [PubMed]
  3. J. J. Wisowaty, "Estimates for the temporal response characteristics of chromatic pathways," J. Opt. Soc. Am. 71, 970–977 (1981).
    [CrossRef] [PubMed]
  4. J. Z. Levinson and L. D. Harmon, "Studies with artificial neurons, III: Mechanisms of flicker fusion," Kybernetik 1, 107–117 (1961).
    [CrossRef] [PubMed]
  5. M. G. H. Fuortes and A. L. Hodgkin, "Changes in time scale and sensitivity in the ommatidia of Limulus," J. Physiol. 172, 239–263 (1964).
  6. J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27–40 (1973).
    [CrossRef] [PubMed]
  7. P. Gouras and E. Zrenner, "Enhancement of luminance flicker by color-opponent mechanisms," Science 205, 587–589 (1979).
    [CrossRef] [PubMed]
  8. H. de Lange, Dzn., "Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light," J. Opt. Soc. Am. 48, 777–784 (1958).
    [CrossRef]
  9. D. H. Kelly, "Visual responses to time-dependent stimuli: I. Amplitude sensitivity measurements," J. Opt. Soc. Am. 51, 422–429 (1961).
    [CrossRef] [PubMed]
  10. H. E. Ives, "A theory of intermittent vision," J. Opt. Soc. Am. and Rev. Sci. Instrum. 6, 343–361 (1922).
    [CrossRef]
  11. S. Hecht and C. D. Verrijp, "Intermittent stimulation by light," J. Gen. Physiol. 17, 273–282 (1933).
  12. F. Veringa, "On the mechanisms underlying de Lange's results," K. Ned. Akad. Wet. Versl. Gewone Vergad. Afd. Natuurkd. 64, 413 (1961).
  13. D. H. Kelly, "Diffusion model of linear flicker responses," J. Opt. Soc. Am. 59, 1665–1670 (1969).
    [CrossRef] [PubMed]
  14. J. Z. Levinson, "One-stage model for visual temporal integration," J. Opt. Soc. Am. 56, 95–97 (1966).
    [CrossRef] [PubMed]
  15. J. Z. Levinson, "Flicker fusion phenomena," Science 160, 21–28 (1968).
    [CrossRef] [PubMed]
  16. W. S. Baron and R. M. Boynton, "Response of primate cones to sinusoidally flickering homochromatic stimuli," J. Physiol. 246, 311–331 (1975).
  17. D. H. Kelly and H. R. Wilson, "Human flicker sensitivity: two stages of retinal diffusion," Science 202, 898–899 (1978).
    [CrossRef]

1981 (1)

1979 (1)

P. Gouras and E. Zrenner, "Enhancement of luminance flicker by color-opponent mechanisms," Science 205, 587–589 (1979).
[CrossRef] [PubMed]

1978 (1)

D. H. Kelly and H. R. Wilson, "Human flicker sensitivity: two stages of retinal diffusion," Science 202, 898–899 (1978).
[CrossRef]

1975 (1)

W. S. Baron and R. M. Boynton, "Response of primate cones to sinusoidally flickering homochromatic stimuli," J. Physiol. 246, 311–331 (1975).

1973 (1)

J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27–40 (1973).
[CrossRef] [PubMed]

1969 (1)

1968 (1)

J. Z. Levinson, "Flicker fusion phenomena," Science 160, 21–28 (1968).
[CrossRef] [PubMed]

1966 (1)

1964 (2)

P. L. Walraven and H. J. Leebeek, "Phase shift of sinusoidally alternating colored stimuli," J. Opt. Soc. Am. 54, 78–82 (1964).
[CrossRef] [PubMed]

M. G. H. Fuortes and A. L. Hodgkin, "Changes in time scale and sensitivity in the ommatidia of Limulus," J. Physiol. 172, 239–263 (1964).

1961 (3)

J. Z. Levinson and L. D. Harmon, "Studies with artificial neurons, III: Mechanisms of flicker fusion," Kybernetik 1, 107–117 (1961).
[CrossRef] [PubMed]

F. Veringa, "On the mechanisms underlying de Lange's results," K. Ned. Akad. Wet. Versl. Gewone Vergad. Afd. Natuurkd. 64, 413 (1961).

D. H. Kelly, "Visual responses to time-dependent stimuli: I. Amplitude sensitivity measurements," J. Opt. Soc. Am. 51, 422–429 (1961).
[CrossRef] [PubMed]

1958 (1)

1933 (1)

S. Hecht and C. D. Verrijp, "Intermittent stimulation by light," J. Gen. Physiol. 17, 273–282 (1933).

1922 (1)

H. E. Ives, "A theory of intermittent vision," J. Opt. Soc. Am. and Rev. Sci. Instrum. 6, 343–361 (1922).
[CrossRef]

1914 (1)

H. E. Ives and E. F. Kingsbury, "The theory of the flicker photometer," Philos. Mag. 28, 708–728 (1914).

Baron, W. S.

W. S. Baron and R. M. Boynton, "Response of primate cones to sinusoidally flickering homochromatic stimuli," J. Physiol. 246, 311–331 (1975).

Boynton, R. M.

W. S. Baron and R. M. Boynton, "Response of primate cones to sinusoidally flickering homochromatic stimuli," J. Physiol. 246, 311–331 (1975).

Fuortes, M. G. H.

M. G. H. Fuortes and A. L. Hodgkin, "Changes in time scale and sensitivity in the ommatidia of Limulus," J. Physiol. 172, 239–263 (1964).

Gouras, P.

P. Gouras and E. Zrenner, "Enhancement of luminance flicker by color-opponent mechanisms," Science 205, 587–589 (1979).
[CrossRef] [PubMed]

Harmon, L. D.

J. Z. Levinson and L. D. Harmon, "Studies with artificial neurons, III: Mechanisms of flicker fusion," Kybernetik 1, 107–117 (1961).
[CrossRef] [PubMed]

Hecht, S.

S. Hecht and C. D. Verrijp, "Intermittent stimulation by light," J. Gen. Physiol. 17, 273–282 (1933).

Hodgkin, A. L.

M. G. H. Fuortes and A. L. Hodgkin, "Changes in time scale and sensitivity in the ommatidia of Limulus," J. Physiol. 172, 239–263 (1964).

Ives, H. E.

H. E. Ives, "A theory of intermittent vision," J. Opt. Soc. Am. and Rev. Sci. Instrum. 6, 343–361 (1922).
[CrossRef]

H. E. Ives and E. F. Kingsbury, "The theory of the flicker photometer," Philos. Mag. 28, 708–728 (1914).

Kelly, D. H.

Kingsbury, E. F.

H. E. Ives and E. F. Kingsbury, "The theory of the flicker photometer," Philos. Mag. 28, 708–728 (1914).

Krauskopf, J.

J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27–40 (1973).
[CrossRef] [PubMed]

Lange, H. de

Leebeek, H. J.

Levinson, J. Z.

J. Z. Levinson, "Flicker fusion phenomena," Science 160, 21–28 (1968).
[CrossRef] [PubMed]

J. Z. Levinson, "One-stage model for visual temporal integration," J. Opt. Soc. Am. 56, 95–97 (1966).
[CrossRef] [PubMed]

J. Z. Levinson and L. D. Harmon, "Studies with artificial neurons, III: Mechanisms of flicker fusion," Kybernetik 1, 107–117 (1961).
[CrossRef] [PubMed]

Mollon, J. D.

J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27–40 (1973).
[CrossRef] [PubMed]

Veringa, F.

F. Veringa, "On the mechanisms underlying de Lange's results," K. Ned. Akad. Wet. Versl. Gewone Vergad. Afd. Natuurkd. 64, 413 (1961).

Verrijp, C. D.

S. Hecht and C. D. Verrijp, "Intermittent stimulation by light," J. Gen. Physiol. 17, 273–282 (1933).

Walraven, P. L.

Wilson, H. R.

D. H. Kelly and H. R. Wilson, "Human flicker sensitivity: two stages of retinal diffusion," Science 202, 898–899 (1978).
[CrossRef]

Wisowaty, J. J.

Zrenner, E.

P. Gouras and E. Zrenner, "Enhancement of luminance flicker by color-opponent mechanisms," Science 205, 587–589 (1979).
[CrossRef] [PubMed]

J. Gen. Physiol. (1)

S. Hecht and C. D. Verrijp, "Intermittent stimulation by light," J. Gen. Physiol. 17, 273–282 (1933).

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. and Rev. Sci. Instrum. (1)

H. E. Ives, "A theory of intermittent vision," J. Opt. Soc. Am. and Rev. Sci. Instrum. 6, 343–361 (1922).
[CrossRef]

J. Physiol. (2)

W. S. Baron and R. M. Boynton, "Response of primate cones to sinusoidally flickering homochromatic stimuli," J. Physiol. 246, 311–331 (1975).

M. G. H. Fuortes and A. L. Hodgkin, "Changes in time scale and sensitivity in the ommatidia of Limulus," J. Physiol. 172, 239–263 (1964).

K. Ned. Akad. Wet. Versl. Gewone Vergad. Afd. Natuurkd. (1)

F. Veringa, "On the mechanisms underlying de Lange's results," K. Ned. Akad. Wet. Versl. Gewone Vergad. Afd. Natuurkd. 64, 413 (1961).

Kybernetik (1)

J. Z. Levinson and L. D. Harmon, "Studies with artificial neurons, III: Mechanisms of flicker fusion," Kybernetik 1, 107–117 (1961).
[CrossRef] [PubMed]

Philos. Mag. (1)

H. E. Ives and E. F. Kingsbury, "The theory of the flicker photometer," Philos. Mag. 28, 708–728 (1914).

Science (3)

J. Z. Levinson, "Flicker fusion phenomena," Science 160, 21–28 (1968).
[CrossRef] [PubMed]

P. Gouras and E. Zrenner, "Enhancement of luminance flicker by color-opponent mechanisms," Science 205, 587–589 (1979).
[CrossRef] [PubMed]

D. H. Kelly and H. R. Wilson, "Human flicker sensitivity: two stages of retinal diffusion," Science 202, 898–899 (1978).
[CrossRef]

Vision Res. (1)

J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27–40 (1973).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Apparatus described in text.

Fig. 2
Fig. 2

Phase advance of green from exact counterphase with red for minimal perceived flicker. Lower right, settings of subject LB at one retinal illuminance, to illustrate how ordinates were determined: at 40 Hz and less, flicker minima gave one point at each frequency. Bars indicate standard errors. Above40 Hz datum points indicate flicker thresholds, not minima. The average of each pair of thresholds is used, a method supported in the text, on the evidence of Fig. 3, below. Results for three subjects at three illuminances each are shown in the other three quadrants.

Fig. 3
Fig. 3

Phase settings as offset from exact counterphase of red and green flicker as a function of magnitude estimate of (subjective) flicker intensity. The horizontal scale is linear in (magnitude estimate)0.4, the power being intended to produce intersection of the regression lines at magnitude estimate zero. The regression lines cross the phase-shift axis at 4.6° and 4.8°, in good agreement with the value of 4° determined by the minimum flicker criterion. Luminance, 675 Td.

Fig. 4
Fig. 4

Average settings made by three subjects. Bars show standard errors.

Fig. 5
Fig. 5

Effect on phase setting of increasing luminance in green channel relative to balance at 20 Hz. Required lead of green is reduced by increasing its luminance but is never eliminated. Reduction is greatest at those frequencies for which the required lead is greatest, i.e., 30 and 35 Hz. At 45 and 50 Hz luminance seems to have little effect and lead of the settings is also least to begin with.

Fig. 6
Fig. 6

Effect on phase settings of luminance imbalance as a function of frequency; imbalance is the parameter, in log units, relative to best flicker-photometric match at 20 Hz. Darkening the green by −0.2 log unit is indicated by ⊝, and brightening by 0.4 log units is indicated by ⊕.

Fig. 7
Fig. 7

Red–green luminance balance as a function of frequency at two relative phases.

Fig. 8
Fig. 8

Least-flicker phase settings as a function of luminance of both channels.