Abstract

A new approach to the representation of nonsymmetrical optical systems by matrices is introduced. In the paraxial approximation each component of an optical system is represented by a 4 × 4 unitary matrix, and the product of those matrices yields the transfer matrix of the system. The transfer matrix that represents the propagation between two arbitrary planes through the system containing two independently rotated cylindrical lenses is decomposed into the product of three matrices. The eigenvalues of the submatrices in this factorized form determine the focal lengths of the equivalent system and the localization of the foci of the system with respect to these arbitrarily chosen planes.

© 1983 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription