Abstract

In the paraxial approximation a symmetrical optical system may be represented by a 2 × 2 matrix. It has been the custom to describe each optical element by a transfer matrix representing propagation between the principal planes or through an interface for thin elements. If the focal-plane representation is used instead, any focusing element or combination of elements is represented by the same antidiagonal matrix whose nonzero elements are the focal lengths: The matrix represents propagation between the focal planes. For propagation between any two arbitrary planes, the system transfer matrix can be decomposed into the product of two upper triangular matrices and an antidiagonal matrix. This decomposition yields the above-mentioned focal-plane matrix, and the two upper triangular matrices represent propagation between the input and the output planes and the focal planes. Because the matrix decomposition directly yields the parameters of interest, the analysis and the synthesis of optical systems aresimpler to carry out. Examples are given for lenses, diopters, mirrors, periodic sequences, resonators, lenslike media, and phase-conjugate mirror systems.

© 1983 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription