Abstract

Simultaneous masking using test and mask gratings composed of isochromatic luminance variations and isoluminant chromatic variations was studied. Masking of chromatic gratings by chromatic gratings shows less spatial-frequency specificity than does masking of luminance gratings by luminance gratings. Luminance gratings mask chromatic gratings of identical space-average luminance and chromaticity little and only when the spatial frequencies of the test and mask gratings are similar. Chromatic gratings, however, profoundly mask luminance gratings with a degree of spatial-frequency specificity akin to that of luminance-luminance masking. The insensitivity of the luminance-color masking results to the relative phase of the chromatic and luminance gratings indicates that the observed asymmetry is not due to local interactions.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. De Valois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
    [Crossref] [PubMed]
  2. T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
    [PubMed]
  3. R. L. Hilz, G. Huppmann, and C. R. Cavonius, “Influence of luminance contrast on hue discrimination,” J. Opt. Soc. Am. 64, 763–766 (1974).
    [Crossref] [PubMed]
  4. G. J. C. van der Horst and M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969).
    [Crossref] [PubMed]
  5. E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt.Soc. Am. 63, 1173–1174 (1973).
    [Crossref]
  6. K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool and E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 277–285.
    [Crossref]
  7. S. Lu and D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. 11, 482–490 (1972).
    [PubMed]
  8. Although our“100%” contrast chromatic gratings correspond to the maximum peak-to-peak red–green differences available on our monitor, greater red–green differences could be produced by using monochromatic reference points. The CIE line corresponding to the monitor’s red–green axis covers only 46% of the overlapping line connecting points at about 493¯ and 520 nm, respectively.
  9. T. W. Butler and L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
    [Crossref] [PubMed]
  10. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [Crossref] [PubMed]
  11. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
    [Crossref]
  12. G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [Crossref] [PubMed]
  13. O. H. Schade, “Optical and photoelectric analog of the eye,” J. Opt. Soc. Am. 46, 721–739 (1956).
    [Crossref] [PubMed]
  14. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
  15. Watanabe et al. report that a similar low-frequency falloff for sensitivity to isoluminant color patterns appears if the spatial-frequency range tested is extended to low spatial frequencies. [A. Watanabe, H. Sakata, and H. Isono,“Chromatic spatial sine-wave response of the human visual system,” NHK Lab. Note 198,1-10 (1976)].
  16. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).
  17. O. E. Favreau and P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
    [Crossref] [PubMed]
  18. L. G. Thorell, The Role of Color in Form Analysis,unpublished Ph.D. thesis (University of California, Berkeley, Calif., 1981).
  19. F. S. Frome, S. L. Buck, and R. M. Boynton, “Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level,” J. Opt.Soc. Am. 71, 145–150 (1981).
    [Crossref] [PubMed]
  20. O. E. Favreau, “Interference in colour-contingent motion aftereffects,” Quart. J. Exp. Psychol. 28, 553–560 (1976).
    [Crossref]
  21. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
    [Crossref] [PubMed]

1981 (3)

O. E. Favreau and P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[Crossref] [PubMed]

F. S. Frome, S. L. Buck, and R. M. Boynton, “Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level,” J. Opt.Soc. Am. 71, 145–150 (1981).
[Crossref] [PubMed]

I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
[Crossref] [PubMed]

1980 (1)

1978 (1)

T. W. Butler and L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
[Crossref] [PubMed]

1976 (1)

O. E. Favreau, “Interference in colour-contingent motion aftereffects,” Quart. J. Exp. Psychol. 28, 553–560 (1976).
[Crossref]

1974 (1)

1973 (1)

E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt.Soc. Am. 63, 1173–1174 (1973).
[Crossref]

1972 (1)

S. Lu and D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. 11, 482–490 (1972).
[PubMed]

1971 (1)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[Crossref]

1969 (2)

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).

G. J. C. van der Horst and M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969).
[Crossref] [PubMed]

1968 (1)

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).

1966 (2)

R. L. De Valois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966).
[Crossref] [PubMed]

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

1957 (1)

1956 (1)

Abramov, I.

Bedford, R. E.

Blakemore, C.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).

Bouman, M. A.

Boynton, R. M.

F. S. Frome, S. L. Buck, and R. M. Boynton, “Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level,” J. Opt.Soc. Am. 71, 145–150 (1981).
[Crossref] [PubMed]

Buck, S. L.

F. S. Frome, S. L. Buck, and R. M. Boynton, “Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level,” J. Opt.Soc. Am. 71, 145–150 (1981).
[Crossref] [PubMed]

Butler, T. W.

T. W. Butler and L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
[Crossref] [PubMed]

Campbell, F. W.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).

Cavanagh, P.

O. E. Favreau and P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[Crossref] [PubMed]

Cavonius, C. R.

De Valois, K. K.

K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool and E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 277–285.
[Crossref]

De Valois, R. L.

Favreau, O. E.

O. E. Favreau and P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[Crossref] [PubMed]

O. E. Favreau, “Interference in colour-contingent motion aftereffects,” Quart. J. Exp. Psychol. 28, 553–560 (1976).
[Crossref]

Fender, D. H.

S. Lu and D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. 11, 482–490 (1972).
[PubMed]

Foley, J. M.

Frome, F. S.

F. S. Frome, S. L. Buck, and R. M. Boynton, “Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level,” J. Opt.Soc. Am. 71, 145–150 (1981).
[Crossref] [PubMed]

Granger, E. M.

E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt.Soc. Am. 63, 1173–1174 (1973).
[Crossref]

Heurtley, J. C.

E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt.Soc. Am. 63, 1173–1174 (1973).
[Crossref]

Hilz, R. L.

Hubel, D. H.

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Huppmann, G.

Jacobs, G. H.

Legge, G. E.

Levitt, H.

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[Crossref]

Lu, S.

S. Lu and D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. 11, 482–490 (1972).
[PubMed]

Powell, I.

Riggs, L. A.

T. W. Butler and L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
[Crossref] [PubMed]

Robson, J. G.

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).

Schade, O. H.

Thorell, L. G.

L. G. Thorell, The Role of Color in Form Analysis,unpublished Ph.D. thesis (University of California, Berkeley, Calif., 1981).

van der Horst, G. J. C.

Wiesel, T. N.

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Wyszecki, G.

Appl. Opt. (1)

Invest. Ophthalmol. (1)

S. Lu and D. H. Fender, “The interaction of color and luminance in stereoscopic vision,” Invest. Ophthalmol. 11, 482–490 (1972).
[PubMed]

J. Acoust. Soc. Am. (1)

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[Crossref]

J. Neurophysiol. (1)

T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

J. Opt. Soc. Am. (6)

J. Opt.Soc. Am. (2)

F. S. Frome, S. L. Buck, and R. M. Boynton, “Visibility of borders: separate and combined effects of color differences, luminance contrast, and luminance level,” J. Opt.Soc. Am. 71, 145–150 (1981).
[Crossref] [PubMed]

E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt.Soc. Am. 63, 1173–1174 (1973).
[Crossref]

J. Physiol. (2)

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–556 (1968).

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).

Quart. J. Exp. Psychol. (1)

O. E. Favreau, “Interference in colour-contingent motion aftereffects,” Quart. J. Exp. Psychol. 28, 553–560 (1976).
[Crossref]

Science (1)

O. E. Favreau and P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[Crossref] [PubMed]

Vision Res. (1)

T. W. Butler and L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
[Crossref] [PubMed]

Other (4)

Although our“100%” contrast chromatic gratings correspond to the maximum peak-to-peak red–green differences available on our monitor, greater red–green differences could be produced by using monochromatic reference points. The CIE line corresponding to the monitor’s red–green axis covers only 46% of the overlapping line connecting points at about 493¯ and 520 nm, respectively.

K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool and E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 277–285.
[Crossref]

L. G. Thorell, The Role of Color in Form Analysis,unpublished Ph.D. thesis (University of California, Berkeley, Calif., 1981).

Watanabe et al. report that a similar low-frequency falloff for sensitivity to isoluminant color patterns appears if the spatial-frequency range tested is extended to low spatial frequencies. [A. Watanabe, H. Sakata, and H. Isono,“Chromatic spatial sine-wave response of the human visual system,” NHK Lab. Note 198,1-10 (1976)].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Luminance (yellow–black, dashed curves) and chromatic (red–green, solid curves) contrast sensitivities for two observers.

Fig. 2
Fig. 2

Luminance masking (yellow–black mask/yellow–black test, solid curves) and chromatic masking (red–green mask/red–green test, dashed curves) for two observers. The degree of masking is calculated as log[(contrast sensitivity in the presence of the mask)/(unmasked contrast sensitivity)]. Each point represents the average masking for all combinations of 1-, 2-, 4-, and 8-c/deg test and mask gratings that have the specified mask–test spatial-frequency ratio. Both the mask and test gratings were sinusoids, and the mask gratings were of 20% contrast.

Fig. 3
Fig. 3

Mixed luminance-chromatic masking under two conditions: red–green mask/yellow–black test, solid curves, and yellow–black mask/red–green test, dashed curves. The data represent the average of results obtained when the test and mask gratings were at 0°, 90°, and 180° relative phase.

Fig. 4
Fig. 4

Mixed luminance-chromatic masking as a function of spatial frequency. The data are for subject DW and represent averages of results obtained with the test and mask gratings at 0°, 90°, and 180° relative phase. Left, red–green mask/yellow–black test; right, yellow–black mask/red–green test.

Fig. 5
Fig. 5

Luminance masking of color (yellow–black mask/red–green test) as a function of the relative phase of the mask and test gratings.

Fig. 6
Fig. 6

Chromatic masking of luminance (red–green mask/yellow–black test) as a function of the relative phase of the mask and test gratings.

Fig. 7
Fig. 7

Square-wave grating masking of color by luminance as a function of phase for three observers. The masking gratings were square-wave yellow–black gratings of 20% contrast, and the test gratings were equiluminant red-green sinusoidal gratings.