Abstract

Simultaneous detection of the optogalvanic effect and of the laser-induced intensity variations in emission lines in a uranium hollow-cathode discharge show that a part of the absorbed laser energy is transferred to all the species in the lamp by means of electron collisions. This transfer results in a global heating of the plasma and in an increase of ion and atom densities. From the measured nonisotopic selectivity of ion production associated with the optogalvanic effect, we conclude that impedance changes in the discharge are essentially due to the heating of the plasma. It follows that the optogalvanic effect is not a suitable scheme for isotopic enrichment by cataphoresis.

© 1982 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription