Abstract

The spatially localized threshold-elevation aftereffect of spatial-frequency adaptation was measured by using localized, aperiodic test patterns that have bandpass Fourier transforms. At a given retinal location, the threshold-elevation curves are consistent with the fatigue of size-tuned mechanisms with center-surround sensitivity profile. Only a few different sizes of such mechanisms were required to fit the local results. The local aftereffect was also measured as a function of eccentricity near the fovea. The results indicate that the threshold-elevation aftereffect of spatial-frequency adaptation is not spatially homogeneous.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell and J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
  2. N. Graham and J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
    [CrossRef] [PubMed]
  3. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. London. 203, 237–260 (1969).
  4. G. E. Legge, “Adaptation to a spatial impulse: implications for Fourier transform models of visual processing,” Vision Res. 16, 1407–1418 (1976).
    [CrossRef] [PubMed]
  5. J. Nachmias, R. Sansbury, A. Vassilev, and A. Weber, “Adaptation to square-wave gratings: in search of the elusive third harmonic,” Vision Res. 13, 1335–1342 (1973).
    [CrossRef]
  6. O. Bryngdahl, “Perceived contrast variation with eccentricity of spatial sine-wave stimuli,” Vision Res. 6, 553–565 (1966).
    [CrossRef] [PubMed]
  7. R. Hilz and C. R. Cavonius, “Functional organization of the peripheral retina: sensitivity to periodic stimuli,” Vision Res. 14, 1333–1337 (1974).
    [CrossRef] [PubMed]
  8. H. R. Wilson and S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
    [CrossRef] [PubMed]
  9. J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns. 1. The near peripheral visual field (eccentricity 0°–8°),” J. Opt. Soc. Am. 68, 860–865 (1978).
    [CrossRef] [PubMed]
  10. J. Hoeskstra, D. P. J. van der Groot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine patterns,” Vision Res. 14, 365–368 (1974).
    [CrossRef]
  11. O. Estevs and C. R. Cavonius, “Low frequency attenuation in the detection of gratings: sorting out the artifacts,” Vision Res. 16, 497–500 (1976).
    [CrossRef]
  12. R. L. Savoy and J. J. McCann, “Visibility of low spatial frequency sine-wave targets: dependence on number of cycles,” J. Opt. Soc. Am. 65, 343–350 (1975).
    [CrossRef] [PubMed]
  13. G. J. Van der Wildt, C. J. Keemink, and G. van den Brink, “Gradient detection and contrast transfer by the number eye,” Vision Res. 16, 1047–1054 (1976).
    [CrossRef]
  14. J. Robson and N. Graham, “Probability summation and regional variation in sensitivity across the visual field,” Ophthalmol. Visual Sci. Suppl. 17, 221 (1978).
  15. H. R. Wilson, “Quantitative characterization of two types of line spread function near the fovea,” Vision Res. 18, 971–982 (1978).
    [CrossRef]
  16. J. O. Limb and C. B. Rubinstein, “A model of threshold vision incorporating inhomogeneity of the visual field,” Vision Res. 17, 571–584 (1977).
    [CrossRef] [PubMed]
  17. H. R. Wilson and J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
    [CrossRef] [PubMed]
  18. J. R. Bergen, H. R. Wilson, and J. D. Cowan, “Further evidence for four mechanisms mediating vision at threshold: Sensitivities to complex gratings and aperiodic stimuli,” J. Opt. Soc. Am. 69, 1580–1587 (1979).
    [CrossRef] [PubMed]
  19. I. Rentschler and A. Fiorentini, “Meridional anisotropy of psychophysical spatial interactions,” Vision Res. 14, 1467–1473 (1974).
    [CrossRef] [PubMed]
  20. G. D. Sullivan, M. A. Georgeson, and K. Oatley, “Channels for spatial frequency selection and the detection of single bars by the human visual system,” Vision Res. 12, 383–394 (1972).
    [CrossRef] [PubMed]
  21. T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
    [CrossRef] [PubMed]
  22. J. G. Daugman and R. J. W. Mansfield, “Adpatation of spatial channels in human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 18,(1979).
  23. M. Hines, “Line spread function variation near the fovea,” Vision Res. 16, 567–572 (1976).
    [CrossRef] [PubMed]
  24. J. Nachmias, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (personal communication).
  25. R. F. Quick, “A vector magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
    [CrossRef]
  26. G. Legge and J. Foley, “Spatial frequency masking in human vision: dependence on contrast and frequency,” Ophthalmol. Visual Sci. Suppl. 18, 59 (1979).
  27. G. C. Phillips and H. R. Wilson, “Orientation selectivity of the human visual system,” presented at the Annual Meeting of the Optical Society of America, Chicago, 1980.
  28. C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).
  29. K. I. Beverley and D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).
  30. K. K. DeValois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vision Res. 17, 1057–1066 (1977).
    [CrossRef]
  31. J. J. Kulikowski and P. E. King-Smith, “Spatial arrangement of line, edge, and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
    [CrossRef] [PubMed]
  32. C. F. Stromeyer and B. Julesz, “Spatial frequeny masking in vision: critical bands and spread of masking,” J. Opt. Soc. Am. 62, 1221–1232 (1972).
    [CrossRef] [PubMed]
  33. R. M. Shapley and D. J. Tolhurst, “Edge detectors in human vision,” J. Physiol. 229, 165–183 (1973).
  34. D. W. Williams and H. R. Wilson, “Spatial frequency adaptation alters spatial probability summation,” (to be published).

1979 (4)

J. G. Daugman and R. J. W. Mansfield, “Adpatation of spatial channels in human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 18,(1979).

G. Legge and J. Foley, “Spatial frequency masking in human vision: dependence on contrast and frequency,” Ophthalmol. Visual Sci. Suppl. 18, 59 (1979).

H. R. Wilson and J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

J. R. Bergen, H. R. Wilson, and J. D. Cowan, “Further evidence for four mechanisms mediating vision at threshold: Sensitivities to complex gratings and aperiodic stimuli,” J. Opt. Soc. Am. 69, 1580–1587 (1979).
[CrossRef] [PubMed]

1978 (3)

J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns. 1. The near peripheral visual field (eccentricity 0°–8°),” J. Opt. Soc. Am. 68, 860–865 (1978).
[CrossRef] [PubMed]

J. Robson and N. Graham, “Probability summation and regional variation in sensitivity across the visual field,” Ophthalmol. Visual Sci. Suppl. 17, 221 (1978).

H. R. Wilson, “Quantitative characterization of two types of line spread function near the fovea,” Vision Res. 18, 971–982 (1978).
[CrossRef]

1977 (3)

J. O. Limb and C. B. Rubinstein, “A model of threshold vision incorporating inhomogeneity of the visual field,” Vision Res. 17, 571–584 (1977).
[CrossRef] [PubMed]

K. K. DeValois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vision Res. 17, 1057–1066 (1977).
[CrossRef]

H. R. Wilson and S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
[CrossRef] [PubMed]

1976 (4)

G. E. Legge, “Adaptation to a spatial impulse: implications for Fourier transform models of visual processing,” Vision Res. 16, 1407–1418 (1976).
[CrossRef] [PubMed]

M. Hines, “Line spread function variation near the fovea,” Vision Res. 16, 567–572 (1976).
[CrossRef] [PubMed]

G. J. Van der Wildt, C. J. Keemink, and G. van den Brink, “Gradient detection and contrast transfer by the number eye,” Vision Res. 16, 1047–1054 (1976).
[CrossRef]

O. Estevs and C. R. Cavonius, “Low frequency attenuation in the detection of gratings: sorting out the artifacts,” Vision Res. 16, 497–500 (1976).
[CrossRef]

1975 (1)

1974 (4)

J. Hoeskstra, D. P. J. van der Groot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef]

R. F. Quick, “A vector magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef]

R. Hilz and C. R. Cavonius, “Functional organization of the peripheral retina: sensitivity to periodic stimuli,” Vision Res. 14, 1333–1337 (1974).
[CrossRef] [PubMed]

I. Rentschler and A. Fiorentini, “Meridional anisotropy of psychophysical spatial interactions,” Vision Res. 14, 1467–1473 (1974).
[CrossRef] [PubMed]

1973 (4)

J. Nachmias, R. Sansbury, A. Vassilev, and A. Weber, “Adaptation to square-wave gratings: in search of the elusive third harmonic,” Vision Res. 13, 1335–1342 (1973).
[CrossRef]

J. J. Kulikowski and P. E. King-Smith, “Spatial arrangement of line, edge, and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
[CrossRef] [PubMed]

R. M. Shapley and D. J. Tolhurst, “Edge detectors in human vision,” J. Physiol. 229, 165–183 (1973).

K. I. Beverley and D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).

1972 (2)

C. F. Stromeyer and B. Julesz, “Spatial frequeny masking in vision: critical bands and spread of masking,” J. Opt. Soc. Am. 62, 1221–1232 (1972).
[CrossRef] [PubMed]

G. D. Sullivan, M. A. Georgeson, and K. Oatley, “Channels for spatial frequency selection and the detection of single bars by the human visual system,” Vision Res. 12, 383–394 (1972).
[CrossRef] [PubMed]

1971 (2)

N. Graham and J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).

1969 (1)

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. London. 203, 237–260 (1969).

1968 (1)

F. W. Campbell and J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

1966 (1)

O. Bryngdahl, “Perceived contrast variation with eccentricity of spatial sine-wave stimuli,” Vision Res. 6, 553–565 (1966).
[CrossRef] [PubMed]

1962 (1)

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef] [PubMed]

Bergen, J. R.

Beverley, K. I.

K. I. Beverley and D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).

Bilsen, F. A.

J. Hoeskstra, D. P. J. van der Groot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef]

Blakemore, C.

C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. London. 203, 237–260 (1969).

Bouman, M. A.

Bryngdahl, O.

O. Bryngdahl, “Perceived contrast variation with eccentricity of spatial sine-wave stimuli,” Vision Res. 6, 553–565 (1966).
[CrossRef] [PubMed]

Bueno de Mesquita, A. E.

Campbell, F. W.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. London. 203, 237–260 (1969).

F. W. Campbell and J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

Cavonius, C. R.

O. Estevs and C. R. Cavonius, “Low frequency attenuation in the detection of gratings: sorting out the artifacts,” Vision Res. 16, 497–500 (1976).
[CrossRef]

R. Hilz and C. R. Cavonius, “Functional organization of the peripheral retina: sensitivity to periodic stimuli,” Vision Res. 14, 1333–1337 (1974).
[CrossRef] [PubMed]

Cornsweet, T. N.

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef] [PubMed]

Cowan, J. D.

Daugman, J. G.

J. G. Daugman and R. J. W. Mansfield, “Adpatation of spatial channels in human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 18,(1979).

DeValois, K. K.

K. K. DeValois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vision Res. 17, 1057–1066 (1977).
[CrossRef]

Estevs, O.

O. Estevs and C. R. Cavonius, “Low frequency attenuation in the detection of gratings: sorting out the artifacts,” Vision Res. 16, 497–500 (1976).
[CrossRef]

Fiorentini, A.

I. Rentschler and A. Fiorentini, “Meridional anisotropy of psychophysical spatial interactions,” Vision Res. 14, 1467–1473 (1974).
[CrossRef] [PubMed]

Foley, J.

G. Legge and J. Foley, “Spatial frequency masking in human vision: dependence on contrast and frequency,” Ophthalmol. Visual Sci. Suppl. 18, 59 (1979).

Georgeson, M. A.

G. D. Sullivan, M. A. Georgeson, and K. Oatley, “Channels for spatial frequency selection and the detection of single bars by the human visual system,” Vision Res. 12, 383–394 (1972).
[CrossRef] [PubMed]

Giese, S. C.

H. R. Wilson and S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
[CrossRef] [PubMed]

Graham, N.

J. Robson and N. Graham, “Probability summation and regional variation in sensitivity across the visual field,” Ophthalmol. Visual Sci. Suppl. 17, 221 (1978).

N. Graham and J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Hilz, R.

R. Hilz and C. R. Cavonius, “Functional organization of the peripheral retina: sensitivity to periodic stimuli,” Vision Res. 14, 1333–1337 (1974).
[CrossRef] [PubMed]

Hines, M.

M. Hines, “Line spread function variation near the fovea,” Vision Res. 16, 567–572 (1976).
[CrossRef] [PubMed]

Hoeskstra, J.

J. Hoeskstra, D. P. J. van der Groot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef]

Julesz, B.

Keemink, C. J.

G. J. Van der Wildt, C. J. Keemink, and G. van den Brink, “Gradient detection and contrast transfer by the number eye,” Vision Res. 16, 1047–1054 (1976).
[CrossRef]

King-Smith, P. E.

J. J. Kulikowski and P. E. King-Smith, “Spatial arrangement of line, edge, and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
[CrossRef] [PubMed]

Koenderink, J. J.

Kulikowski, J. J.

J. J. Kulikowski and P. E. King-Smith, “Spatial arrangement of line, edge, and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
[CrossRef] [PubMed]

Legge, G.

G. Legge and J. Foley, “Spatial frequency masking in human vision: dependence on contrast and frequency,” Ophthalmol. Visual Sci. Suppl. 18, 59 (1979).

Legge, G. E.

G. E. Legge, “Adaptation to a spatial impulse: implications for Fourier transform models of visual processing,” Vision Res. 16, 1407–1418 (1976).
[CrossRef] [PubMed]

Limb, J. O.

J. O. Limb and C. B. Rubinstein, “A model of threshold vision incorporating inhomogeneity of the visual field,” Vision Res. 17, 571–584 (1977).
[CrossRef] [PubMed]

Mansfield, R. J. W.

J. G. Daugman and R. J. W. Mansfield, “Adpatation of spatial channels in human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 18,(1979).

McCann, J. J.

Nachmias, J.

J. Nachmias, R. Sansbury, A. Vassilev, and A. Weber, “Adaptation to square-wave gratings: in search of the elusive third harmonic,” Vision Res. 13, 1335–1342 (1973).
[CrossRef]

N. Graham and J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).

J. Nachmias, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (personal communication).

Oatley, K.

G. D. Sullivan, M. A. Georgeson, and K. Oatley, “Channels for spatial frequency selection and the detection of single bars by the human visual system,” Vision Res. 12, 383–394 (1972).
[CrossRef] [PubMed]

Phillips, G. C.

G. C. Phillips and H. R. Wilson, “Orientation selectivity of the human visual system,” presented at the Annual Meeting of the Optical Society of America, Chicago, 1980.

Quick, R. F.

R. F. Quick, “A vector magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef]

Regan, D.

K. I. Beverley and D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).

Rentschler, I.

I. Rentschler and A. Fiorentini, “Meridional anisotropy of psychophysical spatial interactions,” Vision Res. 14, 1467–1473 (1974).
[CrossRef] [PubMed]

Robson, J.

J. Robson and N. Graham, “Probability summation and regional variation in sensitivity across the visual field,” Ophthalmol. Visual Sci. Suppl. 17, 221 (1978).

F. W. Campbell and J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

Rubinstein, C. B.

J. O. Limb and C. B. Rubinstein, “A model of threshold vision incorporating inhomogeneity of the visual field,” Vision Res. 17, 571–584 (1977).
[CrossRef] [PubMed]

Sansbury, R.

J. Nachmias, R. Sansbury, A. Vassilev, and A. Weber, “Adaptation to square-wave gratings: in search of the elusive third harmonic,” Vision Res. 13, 1335–1342 (1973).
[CrossRef]

Savoy, R. L.

Shapley, R. M.

R. M. Shapley and D. J. Tolhurst, “Edge detectors in human vision,” J. Physiol. 229, 165–183 (1973).

Slappendel, S.

Stromeyer, C. F.

Sullivan, G. D.

G. D. Sullivan, M. A. Georgeson, and K. Oatley, “Channels for spatial frequency selection and the detection of single bars by the human visual system,” Vision Res. 12, 383–394 (1972).
[CrossRef] [PubMed]

Tolhurst, D. J.

R. M. Shapley and D. J. Tolhurst, “Edge detectors in human vision,” J. Physiol. 229, 165–183 (1973).

van den Brink, G.

G. J. Van der Wildt, C. J. Keemink, and G. van den Brink, “Gradient detection and contrast transfer by the number eye,” Vision Res. 16, 1047–1054 (1976).
[CrossRef]

J. Hoeskstra, D. P. J. van der Groot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef]

van der Groot, D. P. J.

J. Hoeskstra, D. P. J. van der Groot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef]

Van der Wildt, G. J.

G. J. Van der Wildt, C. J. Keemink, and G. van den Brink, “Gradient detection and contrast transfer by the number eye,” Vision Res. 16, 1047–1054 (1976).
[CrossRef]

Vassilev, A.

J. Nachmias, R. Sansbury, A. Vassilev, and A. Weber, “Adaptation to square-wave gratings: in search of the elusive third harmonic,” Vision Res. 13, 1335–1342 (1973).
[CrossRef]

Weber, A.

J. Nachmias, R. Sansbury, A. Vassilev, and A. Weber, “Adaptation to square-wave gratings: in search of the elusive third harmonic,” Vision Res. 13, 1335–1342 (1973).
[CrossRef]

Williams, D. W.

D. W. Williams and H. R. Wilson, “Spatial frequency adaptation alters spatial probability summation,” (to be published).

Wilson, H. R.

J. R. Bergen, H. R. Wilson, and J. D. Cowan, “Further evidence for four mechanisms mediating vision at threshold: Sensitivities to complex gratings and aperiodic stimuli,” J. Opt. Soc. Am. 69, 1580–1587 (1979).
[CrossRef] [PubMed]

H. R. Wilson and J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

H. R. Wilson, “Quantitative characterization of two types of line spread function near the fovea,” Vision Res. 18, 971–982 (1978).
[CrossRef]

H. R. Wilson and S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
[CrossRef] [PubMed]

D. W. Williams and H. R. Wilson, “Spatial frequency adaptation alters spatial probability summation,” (to be published).

G. C. Phillips and H. R. Wilson, “Orientation selectivity of the human visual system,” presented at the Annual Meeting of the Optical Society of America, Chicago, 1980.

Am. J. Psychol. (1)

T. N. Cornsweet, “The staircase method in psychophysics,” Am. J. Psychol. 75, 485–491 (1962).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. Suppl. (1)

J. G. Daugman and R. J. W. Mansfield, “Adpatation of spatial channels in human vision,” Invest. Ophthalmol. Visual Sci. Suppl. 18,(1979).

J. Opt. Soc. Am. (4)

J. Physiol. (4)

R. M. Shapley and D. J. Tolhurst, “Edge detectors in human vision,” J. Physiol. 229, 165–183 (1973).

C. Blakemore and J. Nachmias, “The orientation specificity of two visual after-effects,” J. Physiol. 213, 157–174 (1971).

K. I. Beverley and D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).

F. W. Campbell and J. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

J. Physiol. London. (1)

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. London. 203, 237–260 (1969).

Kybernetik (1)

R. F. Quick, “A vector magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef]

Ophthalmol. Visual Sci. Suppl. (2)

G. Legge and J. Foley, “Spatial frequency masking in human vision: dependence on contrast and frequency,” Ophthalmol. Visual Sci. Suppl. 18, 59 (1979).

J. Robson and N. Graham, “Probability summation and regional variation in sensitivity across the visual field,” Ophthalmol. Visual Sci. Suppl. 17, 221 (1978).

Vision Res. (17)

H. R. Wilson, “Quantitative characterization of two types of line spread function near the fovea,” Vision Res. 18, 971–982 (1978).
[CrossRef]

J. O. Limb and C. B. Rubinstein, “A model of threshold vision incorporating inhomogeneity of the visual field,” Vision Res. 17, 571–584 (1977).
[CrossRef] [PubMed]

H. R. Wilson and J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

J. Hoeskstra, D. P. J. van der Groot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef]

O. Estevs and C. R. Cavonius, “Low frequency attenuation in the detection of gratings: sorting out the artifacts,” Vision Res. 16, 497–500 (1976).
[CrossRef]

K. K. DeValois, “Spatial frequency adaptation can enhance contrast sensitivity,” Vision Res. 17, 1057–1066 (1977).
[CrossRef]

J. J. Kulikowski and P. E. King-Smith, “Spatial arrangement of line, edge, and grating detectors revealed by subthreshold summation,” Vision Res. 13, 1455–1478 (1973).
[CrossRef] [PubMed]

G. J. Van der Wildt, C. J. Keemink, and G. van den Brink, “Gradient detection and contrast transfer by the number eye,” Vision Res. 16, 1047–1054 (1976).
[CrossRef]

N. Graham and J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

M. Hines, “Line spread function variation near the fovea,” Vision Res. 16, 567–572 (1976).
[CrossRef] [PubMed]

G. E. Legge, “Adaptation to a spatial impulse: implications for Fourier transform models of visual processing,” Vision Res. 16, 1407–1418 (1976).
[CrossRef] [PubMed]

J. Nachmias, R. Sansbury, A. Vassilev, and A. Weber, “Adaptation to square-wave gratings: in search of the elusive third harmonic,” Vision Res. 13, 1335–1342 (1973).
[CrossRef]

O. Bryngdahl, “Perceived contrast variation with eccentricity of spatial sine-wave stimuli,” Vision Res. 6, 553–565 (1966).
[CrossRef] [PubMed]

R. Hilz and C. R. Cavonius, “Functional organization of the peripheral retina: sensitivity to periodic stimuli,” Vision Res. 14, 1333–1337 (1974).
[CrossRef] [PubMed]

H. R. Wilson and S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
[CrossRef] [PubMed]

I. Rentschler and A. Fiorentini, “Meridional anisotropy of psychophysical spatial interactions,” Vision Res. 14, 1467–1473 (1974).
[CrossRef] [PubMed]

G. D. Sullivan, M. A. Georgeson, and K. Oatley, “Channels for spatial frequency selection and the detection of single bars by the human visual system,” Vision Res. 12, 383–394 (1972).
[CrossRef] [PubMed]

Other (3)

J. Nachmias, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (personal communication).

G. C. Phillips and H. R. Wilson, “Orientation selectivity of the human visual system,” presented at the Annual Meeting of the Optical Society of America, Chicago, 1980.

D. W. Williams and H. R. Wilson, “Spatial frequency adaptation alters spatial probability summation,” (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Luminance profiles of two aperiodic patterns used in these experiments. A, difference of Gaussian functions (DOG); B, center line flanked on either side at a distance α by lines at three eighths of the center-line contrast. Thresholds for these patterns were measured as a function of the space constants σ and α, respectively.

Fig. 2
Fig. 2

Sensitivity to DOG’s at fixation as a function of space constant [see Eq. (2)] measured before and after adaptation to 4-cpd sinusoidal grating. The arrow denotes the space-constant equivalent of the adaptation frequency [see text and Eq. (3)]. Threshold elevation is significant in the neighborhood of the adapting frequency. Standard deviations of the data are about 0.05 log10 unit.

Fig. 3
Fig. 3

Change in log contrast sensitivity (preadaptation log sensitivity minus postadaptation log sensitivity) at fixation for DOG’s measured as a function of the space constant following adaptation to 4-cpd sinusoidal grating. Preadaptation and postadaptation sensitivities are shown in Fig. 1. Dotted line marks the 0.02 significance level for threshold elevations as determined by a Monte Carlo technique (see text). Threshold elevation is significant over a broad band in the neighborhood of the adaptation frequency, of which the arrow indicates the space-constant equivalent [Eq. (3)].

Fig. 4
Fig. 4

Change in log contrast sensitivity at fixation for DOG’s measured as a function of space constant for three different adapting frequencies: 2.8, 2, and 1.4 cpd. The change in log contrast sensitivity after adaptation to the 2.8-cpd grating is indicated by the open circles and dashed line, to the 2-cpd grating by filled circles and solid line, and to the 1.4-cpd grating by the open squares and dotted line. Space-constant equivalent of each of the three adapting frequencies is indicated by an arrow with the value of the adapting frequency written above. The bandwidth of threshold elevation is different for each of the three adapting frequencies. Note that the threshold-elevation curve for the 2-cpd grating envelopes the other two curves and that for adaptation frequency 1.4 cpd the peak of threshold elevation is shifted approximately 0.5 octave away from the adapting frequency.

Fig. 5
Fig. 5

Change in log contrast sensitivity at fixation for DOG’s as a function of space constant for three different adapting frequencies: 4, 2, and 1 cpd measured for subject GCP. Same format as Fig. 4. The results are analogous to those in Fig. 4 in that the threshold-elevation curves for the largest and smallest adapting frequencies (1 and 4 cpd) are both enveloped by that of the intermediate adapting frequency (2 cpd).

Fig. 6
Fig. 6

Change in log contrast sensitivities at fixation for DOG’s as a function of space constant for three different adapting frequencies: 1.4, 1.0, and 0.71 cpd. The data corresponding to a given adaptation frequency are designated by a common symbol type and joined by distinct line segments. Arrows indicate the space-constant equivalent of the adapting frequency written above each arrow. The threshold-elevation curves of the three adapting frequencies coincide, suggesting that only a single-sized tuned mechanism is adapted by all three spatial frequencies.

Fig. 7
Fig. 7

Change in log contrast sensitivity at fixation for DOG’s as a function of space constant for two adapting frequencies: 8.0 and 5.6 cpd. Same format as in Fig. 6. Results show that threshold-elevation curves for these adaptation frequencies, which differ by one-half octave, are almost identical, as was found to be the case at low-adaptation frequencies (see Fig. 6).

Fig. 8
Fig. 8

Threshold-elevation curves obtained by using test stimuli with luminance profiles defined by the tenth derivative of a Gaussian function. Open circles are following adaptation at 1.0 cpd, filled circles following adaptation at 2.0 cpd, and open squares following adaptation at 4.0 cpd. The dashed, solid, and dotted curves are the respective model fits to these three sets of data. See text for discussion.

Fig. 9
Fig. 9

For each width of DOG test pattern, the change in log contrast sensitivity at fixation as a function of adapting frequency is plotted. Width of DOG pattern defined by space constant σ [see Eq. (2)]. Data for DOG’s of different width (σ) but that have almost identical threshold elevation for all adapting frequencies are plotted in a single panel. Change in log contrast sensitivity with adapting frequency for five DOG patterns with space constants between σ = 0.04 and σ = 0.15 is essentially the same. For clarity, only the data for patterns with the largest, smallest, and one representative intermediate space constant have been included in D. The arrows in each panel indicate the peak frequency of the Fourier transform of the DOG with space-constant value written above the arrow [see Eq. (3)].

Fig. 10
Fig. 10

Fit of the four-mechanism model to the preadaptation DOG sensitivity data at fixation replotted from Fig. 1. RN, RS, RT, and RU are the responses of the N, S, T, and U mechanisms, respectively. The overall response R of the model is determined by probability summation among the four mechanisms. Gains of model to fit unadapted data are shown in Table 1. Bars B–E indicate the ranges of test patterns used to obtain the data for Figs. 8B–8E, respectively. Note that these ranges correspond to the ranges of thresholds determined by RU, RT, RS, and RN, respectively.

Fig. 11
Fig. 11

Fit of the four-mechanism model to the DOG sensitivity data at fixation following adaptation to 4-cpd grating (replotted from Fig. 1). Arrow denotes the space-constant equivalent of the adapting frequency. Dotted line is the overall response of the unadapted model from Fig. 10. RS and RT are dashed to indicate that it was necessary to decrease gain of these mechanisms to fit adapted data. See Table 2 for required values of kadS and kadT at fixation for adapting frequency of 4 cpd.

Fig. 12
Fig. 12

Sensitivities at fixation to the three-line pattern in Fig. 1B as a function of line separation. Data in Fig. 12A are the preadaptation sensitivities. In Fig. 12A, RS and RN are the response of the S and N mechanisms under unadapted conditions, whereas R is the overall predicted unadapted response obtained by probability summation among the four mechanisms. The other two mechanisms do not contribute to these thresholds. Fig. 12B shows the postadaptation sensitivities following adaptation to a 4-cpd grating. Arrow indicates the amount of decrease in single-line sensitivity following adaptation. RS and RN in B are the individual mechanism responses after adaptation. R is the predicted overall adapted response. Note that under unadapted conditions R reflects primarily the properties of RS, whereas following adaptation R is a composite of the properties of both RS and RN, with the latter obscuring the inhibitory trough of the former.

Fig. 13
Fig. 13

Change in log contrast sensitivity at three different eccentricities, fixation, 2°, and 4°, for DOG’s measured as function of space constant for three different adapting frequencies, 8, 4, and 2 cpd. The arrow in each panel denotes the space-constant equivalent of the adapting frequency. For adapting frequency 2 cpd, the model fit is shown at the three eccentricities. At retinal location 4°, there is no significant threshold elevation for adaptation at 4 or 8 cpd. Note also that the bandwidth of threshold elevation changes with retinal location.

Fig. 14
Fig. 14

Model fit to the threshold-elevation data from Fig. 4. Data and theory for 2.0 cpd have been displaced upward by 0.10 for clarity (right-hand scale). Note that this curve envelopes those for adaptation frequencies 1.4 and 2.8 cpd.

Fig. 15
Fig. 15

Change in log contrast sensitivities at 2° eccentricity for DOG’s as a function of space constant for two different adapting frequencies: 8.0 and 5.7 cpd. Arrows indicate the space-constant equivalent of the adapting frequency. At this retinal location the threshold-elevation aftereffects are distinct for each adapting frequency, in contrast to the results at fixation where they coincide (see Fig. 7). Solid and dashed curves show the model fits to the filled and open circles, respectively.

Tables (2)

Tables Icon

Table 1 Parameter Values Used in Eq. (4) to Fit Unadapted Data for Subject DWW

Tables Icon

Table 2 Values of Adaptation Parameter kadi to Fit Postadaptation DOG Sensitivity Dataa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Contrast = L peak - L mean L mean ,
DOG ( σ , x ) = 3 exp ( - x 2 σ 2 ) - 2 exp ( - x 2 2.25 σ 2 ) .
d 10 d x 10 [ exp ( - x 2 / σ 2 ) ] .
ω MAX = [ 2 ln ( 1.5 ) 1.25 π 2 σ 2 ] 1 / 2 .
LSF i ( x , x ) = A i ( x ) exp [ - ( x - x ) 2 σ 1 2 ( x ) ] - k i 1 exp [ - ( x - x ) 2 k i 2 σ i 2 ( x ) ] ,
A i ( x ) = A ( 0 ) 1 + a i x
σ i ( x ) = σ i ( 0 ) ( 1 + k i x )
R i = [ x = - 4 ° + 4 ° | - LSF i ( x , x ) P ( x ) d x | 4 ] 1 / 4 .
R = ( R N 4 + R S 4 + R T 4 + R u 4 ) 1 / 4 ,