Abstract

To identify and account for the effects from cryocontamination, the infrared spectral transmittances of cryofilms formed by CO2, H2O, and NH3 were measured. These 0.25–14-μm-thick films were cryopumped onto 20-, 80-, and in one case 50-K germanium substrates; the deposition pressures for the films deposited at 20 K and that for 80-K films were approximately 2 × 10−6 Torr. Transmittance spectra were obtained for the 500–3700-cm−1 range with a Fourier-transform spectrometer. Values of the optical properties (n, k) for the CO2, H2O, and NH3 cryofilms were derived from the experimental data using a thin-film-transmittance analytical model and the nonlinear least-squares method. Results from the least-squares method are compared with a Kramers–Kronig determination of the refractive index (n). The optical properties (n, k) of such cryofilms are essential for predicting the degradation of contaminated cryocooled optical surfaces.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Roux, B. E. Wood, and A. M. Smith, “IR optical properties of thin H2O, NH3, and CO2cryofilms,” AEDC-TR-79-57 (AD-A074913, September1979).
  2. K. E. Tempelmeyer and D. W. Mills, “Refractive index of carbon dioxide cryodeposit,” Appl. Opt. 39, 2968–2969 (1968).
  3. A. M. Smith, K. E. Tempelmeyer, P. R. Muller, and B. E. Wood, “Angular distribution of visible and near IR radiation reflected from CO2cryodeposits,” AIAA J. 7, 2274–2280 (1969).
    [CrossRef]
  4. S. B. Thompson, F. Arnold, R. B. Sanderson, and A. W. Monty, “Optical properties of cryodeposits on low scatter mirrors,” in Thermophysics and Spacecraft Thermal Control, Vol. 35 in Progress in Aeronautics and Astronautics (MIT Press, Cambridge, Mass., 1974), pp. 229–248.
  5. J. G. Pipes, J. A. Roux, A. M. Smith, and H. E. Scott, “Infrared transmission of contaminated cryocooled optical windows,” AIAA J. 16, 984–990 (1978).
    [CrossRef]
  6. H. Wolff, H. G. Rollar, and E. Wolff, “Infrared spectra and vapor pressure isotope effect of crystallized ammonia and its deuterium derivatives,” J. Chem. Phys. 55, 1373–1378 (1971).
    [CrossRef]
  7. F. P. Reding and D. F. Hornig, “The vibrational spectra of molecules and complex ions in crystals. V. Ammonia and deutero-ammonia,” J. Chem. Phys. 19, 594–601 (1951).
    [CrossRef]
  8. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1954).
  9. W. E. Osberg and D. F. Hornig, “The vibrational spectra of molecules and complex ions and crystal. VI. Carbon dioxide,” J. Chem. Phys. 20, 1345–1357 (1952).
    [CrossRef]
  10. J. E. Bertie, H. J. Labbe, and E. Whalley, “Absorptivity of ice I in the range 4000–30 cm−1,” J. Chem. Phys. 50, 4501–4520 (1969).
    [CrossRef]
  11. N. Ockman, “The infrared and raman spectra of ice,” Adv. Phys. 7, 199–220 (1957).
    [CrossRef]
  12. A. Vasicek, Optics of Thin Films (Trans. H. Watney-Kaczer) (Interscience, New York, 1960).
  13. O. S. Heavens, Optical Properties of Thin Films (Dover, New York, 1965).
  14. M. Herzberger and C. D. Salzberg, “Refractive indices of infrared optical materials and color correction of infrared lenses,” J. Opt. Soc. Am. 52, 420–426 (1962).
    [CrossRef]
  15. C. W. Robertson, H. D. Downing, B. Curnutte, and D. Williams, “Optical constants of solid ammonia in the infrared,” J. Opt. Soc. Am. 65, 432–435 (1975).
    [CrossRef]
  16. G. Sill, U. Fink, and J. R. Ferraro, “Absorption coefficients of solid NH3from 50 to 7000 cm−1,” J. Opt. Soc. Am. 70, 724–739 (1980).
    [CrossRef]
  17. J. A. Roux, B. E. Wood, A. M. Smith, and R. R. Plyler, “Infrared optical properties of thin CO, NO, CH4, HCl, N2O, O2, N2, Ar, and air cryofilms,” AEDC-TR-79-81 (AD-A088269, August1980).

1980 (1)

1978 (1)

J. G. Pipes, J. A. Roux, A. M. Smith, and H. E. Scott, “Infrared transmission of contaminated cryocooled optical windows,” AIAA J. 16, 984–990 (1978).
[CrossRef]

1975 (1)

1971 (1)

H. Wolff, H. G. Rollar, and E. Wolff, “Infrared spectra and vapor pressure isotope effect of crystallized ammonia and its deuterium derivatives,” J. Chem. Phys. 55, 1373–1378 (1971).
[CrossRef]

1969 (2)

A. M. Smith, K. E. Tempelmeyer, P. R. Muller, and B. E. Wood, “Angular distribution of visible and near IR radiation reflected from CO2cryodeposits,” AIAA J. 7, 2274–2280 (1969).
[CrossRef]

J. E. Bertie, H. J. Labbe, and E. Whalley, “Absorptivity of ice I in the range 4000–30 cm−1,” J. Chem. Phys. 50, 4501–4520 (1969).
[CrossRef]

1968 (1)

K. E. Tempelmeyer and D. W. Mills, “Refractive index of carbon dioxide cryodeposit,” Appl. Opt. 39, 2968–2969 (1968).

1962 (1)

1957 (1)

N. Ockman, “The infrared and raman spectra of ice,” Adv. Phys. 7, 199–220 (1957).
[CrossRef]

1952 (1)

W. E. Osberg and D. F. Hornig, “The vibrational spectra of molecules and complex ions and crystal. VI. Carbon dioxide,” J. Chem. Phys. 20, 1345–1357 (1952).
[CrossRef]

1951 (1)

F. P. Reding and D. F. Hornig, “The vibrational spectra of molecules and complex ions in crystals. V. Ammonia and deutero-ammonia,” J. Chem. Phys. 19, 594–601 (1951).
[CrossRef]

Arnold, F.

S. B. Thompson, F. Arnold, R. B. Sanderson, and A. W. Monty, “Optical properties of cryodeposits on low scatter mirrors,” in Thermophysics and Spacecraft Thermal Control, Vol. 35 in Progress in Aeronautics and Astronautics (MIT Press, Cambridge, Mass., 1974), pp. 229–248.

Bertie, J. E.

J. E. Bertie, H. J. Labbe, and E. Whalley, “Absorptivity of ice I in the range 4000–30 cm−1,” J. Chem. Phys. 50, 4501–4520 (1969).
[CrossRef]

Curnutte, B.

Downing, H. D.

Ferraro, J. R.

Fink, U.

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Films (Dover, New York, 1965).

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1954).

Herzberger, M.

Hornig, D. F.

W. E. Osberg and D. F. Hornig, “The vibrational spectra of molecules and complex ions and crystal. VI. Carbon dioxide,” J. Chem. Phys. 20, 1345–1357 (1952).
[CrossRef]

F. P. Reding and D. F. Hornig, “The vibrational spectra of molecules and complex ions in crystals. V. Ammonia and deutero-ammonia,” J. Chem. Phys. 19, 594–601 (1951).
[CrossRef]

Labbe, H. J.

J. E. Bertie, H. J. Labbe, and E. Whalley, “Absorptivity of ice I in the range 4000–30 cm−1,” J. Chem. Phys. 50, 4501–4520 (1969).
[CrossRef]

Mills, D. W.

K. E. Tempelmeyer and D. W. Mills, “Refractive index of carbon dioxide cryodeposit,” Appl. Opt. 39, 2968–2969 (1968).

Monty, A. W.

S. B. Thompson, F. Arnold, R. B. Sanderson, and A. W. Monty, “Optical properties of cryodeposits on low scatter mirrors,” in Thermophysics and Spacecraft Thermal Control, Vol. 35 in Progress in Aeronautics and Astronautics (MIT Press, Cambridge, Mass., 1974), pp. 229–248.

Muller, P. R.

A. M. Smith, K. E. Tempelmeyer, P. R. Muller, and B. E. Wood, “Angular distribution of visible and near IR radiation reflected from CO2cryodeposits,” AIAA J. 7, 2274–2280 (1969).
[CrossRef]

Ockman, N.

N. Ockman, “The infrared and raman spectra of ice,” Adv. Phys. 7, 199–220 (1957).
[CrossRef]

Osberg, W. E.

W. E. Osberg and D. F. Hornig, “The vibrational spectra of molecules and complex ions and crystal. VI. Carbon dioxide,” J. Chem. Phys. 20, 1345–1357 (1952).
[CrossRef]

Pipes, J. G.

J. G. Pipes, J. A. Roux, A. M. Smith, and H. E. Scott, “Infrared transmission of contaminated cryocooled optical windows,” AIAA J. 16, 984–990 (1978).
[CrossRef]

Plyler, R. R.

J. A. Roux, B. E. Wood, A. M. Smith, and R. R. Plyler, “Infrared optical properties of thin CO, NO, CH4, HCl, N2O, O2, N2, Ar, and air cryofilms,” AEDC-TR-79-81 (AD-A088269, August1980).

Reding, F. P.

F. P. Reding and D. F. Hornig, “The vibrational spectra of molecules and complex ions in crystals. V. Ammonia and deutero-ammonia,” J. Chem. Phys. 19, 594–601 (1951).
[CrossRef]

Robertson, C. W.

Rollar, H. G.

H. Wolff, H. G. Rollar, and E. Wolff, “Infrared spectra and vapor pressure isotope effect of crystallized ammonia and its deuterium derivatives,” J. Chem. Phys. 55, 1373–1378 (1971).
[CrossRef]

Roux, J. A.

J. G. Pipes, J. A. Roux, A. M. Smith, and H. E. Scott, “Infrared transmission of contaminated cryocooled optical windows,” AIAA J. 16, 984–990 (1978).
[CrossRef]

J. A. Roux, B. E. Wood, and A. M. Smith, “IR optical properties of thin H2O, NH3, and CO2cryofilms,” AEDC-TR-79-57 (AD-A074913, September1979).

J. A. Roux, B. E. Wood, A. M. Smith, and R. R. Plyler, “Infrared optical properties of thin CO, NO, CH4, HCl, N2O, O2, N2, Ar, and air cryofilms,” AEDC-TR-79-81 (AD-A088269, August1980).

Salzberg, C. D.

Sanderson, R. B.

S. B. Thompson, F. Arnold, R. B. Sanderson, and A. W. Monty, “Optical properties of cryodeposits on low scatter mirrors,” in Thermophysics and Spacecraft Thermal Control, Vol. 35 in Progress in Aeronautics and Astronautics (MIT Press, Cambridge, Mass., 1974), pp. 229–248.

Scott, H. E.

J. G. Pipes, J. A. Roux, A. M. Smith, and H. E. Scott, “Infrared transmission of contaminated cryocooled optical windows,” AIAA J. 16, 984–990 (1978).
[CrossRef]

Sill, G.

Smith, A. M.

J. G. Pipes, J. A. Roux, A. M. Smith, and H. E. Scott, “Infrared transmission of contaminated cryocooled optical windows,” AIAA J. 16, 984–990 (1978).
[CrossRef]

A. M. Smith, K. E. Tempelmeyer, P. R. Muller, and B. E. Wood, “Angular distribution of visible and near IR radiation reflected from CO2cryodeposits,” AIAA J. 7, 2274–2280 (1969).
[CrossRef]

J. A. Roux, B. E. Wood, and A. M. Smith, “IR optical properties of thin H2O, NH3, and CO2cryofilms,” AEDC-TR-79-57 (AD-A074913, September1979).

J. A. Roux, B. E. Wood, A. M. Smith, and R. R. Plyler, “Infrared optical properties of thin CO, NO, CH4, HCl, N2O, O2, N2, Ar, and air cryofilms,” AEDC-TR-79-81 (AD-A088269, August1980).

Tempelmeyer, K. E.

A. M. Smith, K. E. Tempelmeyer, P. R. Muller, and B. E. Wood, “Angular distribution of visible and near IR radiation reflected from CO2cryodeposits,” AIAA J. 7, 2274–2280 (1969).
[CrossRef]

K. E. Tempelmeyer and D. W. Mills, “Refractive index of carbon dioxide cryodeposit,” Appl. Opt. 39, 2968–2969 (1968).

Thompson, S. B.

S. B. Thompson, F. Arnold, R. B. Sanderson, and A. W. Monty, “Optical properties of cryodeposits on low scatter mirrors,” in Thermophysics and Spacecraft Thermal Control, Vol. 35 in Progress in Aeronautics and Astronautics (MIT Press, Cambridge, Mass., 1974), pp. 229–248.

Vasicek, A.

A. Vasicek, Optics of Thin Films (Trans. H. Watney-Kaczer) (Interscience, New York, 1960).

Whalley, E.

J. E. Bertie, H. J. Labbe, and E. Whalley, “Absorptivity of ice I in the range 4000–30 cm−1,” J. Chem. Phys. 50, 4501–4520 (1969).
[CrossRef]

Williams, D.

Wolff, E.

H. Wolff, H. G. Rollar, and E. Wolff, “Infrared spectra and vapor pressure isotope effect of crystallized ammonia and its deuterium derivatives,” J. Chem. Phys. 55, 1373–1378 (1971).
[CrossRef]

Wolff, H.

H. Wolff, H. G. Rollar, and E. Wolff, “Infrared spectra and vapor pressure isotope effect of crystallized ammonia and its deuterium derivatives,” J. Chem. Phys. 55, 1373–1378 (1971).
[CrossRef]

Wood, B. E.

A. M. Smith, K. E. Tempelmeyer, P. R. Muller, and B. E. Wood, “Angular distribution of visible and near IR radiation reflected from CO2cryodeposits,” AIAA J. 7, 2274–2280 (1969).
[CrossRef]

J. A. Roux, B. E. Wood, and A. M. Smith, “IR optical properties of thin H2O, NH3, and CO2cryofilms,” AEDC-TR-79-57 (AD-A074913, September1979).

J. A. Roux, B. E. Wood, A. M. Smith, and R. R. Plyler, “Infrared optical properties of thin CO, NO, CH4, HCl, N2O, O2, N2, Ar, and air cryofilms,” AEDC-TR-79-81 (AD-A088269, August1980).

Adv. Phys. (1)

N. Ockman, “The infrared and raman spectra of ice,” Adv. Phys. 7, 199–220 (1957).
[CrossRef]

AIAA J. (2)

A. M. Smith, K. E. Tempelmeyer, P. R. Muller, and B. E. Wood, “Angular distribution of visible and near IR radiation reflected from CO2cryodeposits,” AIAA J. 7, 2274–2280 (1969).
[CrossRef]

J. G. Pipes, J. A. Roux, A. M. Smith, and H. E. Scott, “Infrared transmission of contaminated cryocooled optical windows,” AIAA J. 16, 984–990 (1978).
[CrossRef]

Appl. Opt. (1)

K. E. Tempelmeyer and D. W. Mills, “Refractive index of carbon dioxide cryodeposit,” Appl. Opt. 39, 2968–2969 (1968).

J. Chem. Phys. (4)

H. Wolff, H. G. Rollar, and E. Wolff, “Infrared spectra and vapor pressure isotope effect of crystallized ammonia and its deuterium derivatives,” J. Chem. Phys. 55, 1373–1378 (1971).
[CrossRef]

F. P. Reding and D. F. Hornig, “The vibrational spectra of molecules and complex ions in crystals. V. Ammonia and deutero-ammonia,” J. Chem. Phys. 19, 594–601 (1951).
[CrossRef]

W. E. Osberg and D. F. Hornig, “The vibrational spectra of molecules and complex ions and crystal. VI. Carbon dioxide,” J. Chem. Phys. 20, 1345–1357 (1952).
[CrossRef]

J. E. Bertie, H. J. Labbe, and E. Whalley, “Absorptivity of ice I in the range 4000–30 cm−1,” J. Chem. Phys. 50, 4501–4520 (1969).
[CrossRef]

J. Opt. Soc. Am. (3)

Other (6)

A. Vasicek, Optics of Thin Films (Trans. H. Watney-Kaczer) (Interscience, New York, 1960).

O. S. Heavens, Optical Properties of Thin Films (Dover, New York, 1965).

J. A. Roux, B. E. Wood, A. M. Smith, and R. R. Plyler, “Infrared optical properties of thin CO, NO, CH4, HCl, N2O, O2, N2, Ar, and air cryofilms,” AEDC-TR-79-81 (AD-A088269, August1980).

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1954).

J. A. Roux, B. E. Wood, and A. M. Smith, “IR optical properties of thin H2O, NH3, and CO2cryofilms,” AEDC-TR-79-57 (AD-A074913, September1979).

S. B. Thompson, F. Arnold, R. B. Sanderson, and A. W. Monty, “Optical properties of cryodeposits on low scatter mirrors,” in Thermophysics and Spacecraft Thermal Control, Vol. 35 in Progress in Aeronautics and Astronautics (MIT Press, Cambridge, Mass., 1974), pp. 229–248.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the infrared optical transmission chamber with Fourier-transform spectrometer. 1, Pyroelectric detector and collection optics. 2, Stainless-steel high-vacuum chamber, 85 cm tall by 70 cm in diameter (33.5 in. by 27.5 in. in diameter). 3, Cryogenically cooled infrared window; germanium, 4 mm thick by 70 mm square (0.158 in. by 2.76 in.) and QCM. 4, He–Ne laser (0.6328-μm) beam (one of two shown) employed to measure cryofilm thickness. 5, Infrared beam, 38 mm in diameter (1.5 in.). 6, 2-mW He–Ne laser. 7, Michelson interferometer. 8, Infrared source and collimator mirror.

Fig. 2
Fig. 2

Transmittance of 14.1-μm-thick solid NH3 on 80-K germanium.

Fig. 3
Fig. 3

Transmittance of 1.43-μm-thick solid NH3 on 20-K germanium.

Fig. 4
Fig. 4

Transmittance of 12.7-μm-thick solid CO2 on 80-K germanium.

Fig. 5
Fig. 5

Transmittance of 3.88-μm-thick solid CO2 on 20-K germanium.

Fig. 6
Fig. 6

Transmittance of 1.50-μm-thick solid H2O on 80-K germanium.

Fig. 7
Fig. 7

Optical properties of NH3 condensed on 80-K germanium.

Fig. 8
Fig. 8

Comparison of NH3 results at 20 K with those of Ref. 4 at 30 K.

Fig. 9
Fig. 9

Comparison of NH3 results at 80 K with those of Ref. 15 at 190 K.

Fig. 10
Fig. 10

Comparison of NH3 results at 80 K with those of Ref. 5 at 80 K.

Fig. 11
Fig. 11

Effect of substrate temperature on CO2 optical properties (20 and 80 K).

Fig. 12
Fig. 12

Comparison of theory and data for 80-K solid CO2 for three different wave numbers.

Fig. 13
Fig. 13

Effect of substrate temperature on H2O optical properties (20, 50, and 80 K).

Fig. 14
Fig. 14

Comparison of H2O results at 20 K with those of Ref. 4 at 30 K.

Fig. 15
Fig. 15

Comparison of H2O results at 80 K with those of Ref. 10 at 100 K.

Tables (3)

Tables Icon

Table 1 Molecular Bands in NH3 (cm−1)

Tables Icon

Table 2 Molecular Bands in CO2 (cm−1)

Tables Icon

Table 3 Molecular Bands in H2O (cm−1)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n = ( sin 2 θ b - β 2 sin 2 θ a ) 1 / 2 ( 1 - β 2 ) 1 / 2 ,
τ = m λ 2 n ( 1 - sin 2 θ n 2 ) ,
n ( v ) = n ( ν m ) + 2 π P ν 1 ν 2 k ( ν ) ν - k ( ν ) ν ( ν ) 2 - ν 2 - k ( ν ) ν - k ( ν m ) ν m ( ν ) 2 - ν 2 m d ν ,
τ = τ ( n , k , θ , n g , ν , d ) ,