Abstract

The hyperfine structure (hfs) of the A2Π excited state of Ca35Cl has been investigated by using the new rf-pumped, laser-rf double-resonance technique. The optically unresolved hfs components of the R2 (N″ = 101), AX (0,0) line were resolved by double resonance, and the measured splittings, when combined with the known X2+- state hfs spacings, show that the A2Π-state hfs splittings are not more than 1 MHz.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Bernath, B. Pinchemel, and R. W. Field, “The hyperfine structure of the calcium monohalides,” J. Chem. Phys. 74, 5508–5515 (1981).
    [Crossref]
  2. W. J. Childs, D. R. Cok, and L. S. Goodman, “Hyperfine studies of the X2∑ ground state of Ca35Cl and Ca37Cl by molecular-beam laser-rf double resonance,” J. Chem. Phys. (1982).
  3. L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigation of CaCl. II. Rotational analysis of the B2∑ ↔ X2∑ transitions,” Phys. Scr. 22, 216–220 (1980).
    [Crossref]
  4. L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigations of CaCl. I. Rotational analysis of the A2Π ↔ X2∑ transitions,” Phys. Scr. 21, 173–178 (1980).
    [Crossref]
  5. J. M. Brown, H. Martin, and F. D. Wayne, “A study of the A2Π ↔ X2∑ system of CaCl by saturation spectroscopy,” Chem. Phys. Lett. 55, 67–70 (1978).
    [Crossref]
  6. P. J. Domaille, T. C. Steimle, N. B. Wong, and D. O. Harris, “High-resolution laser excitation spectroscopy analysis of the B2∑ ↔ X2∑ system of CaCl,” J. Mol. Spectrosc. 65, 354–365 (1977).
    [Crossref]
  7. P. J. Domaille, T. C. Steimle, and D. O. Harris, “The rotational spectrum of the X2∑ state of the Ca35Cl radical using laser-microwave optical double resonance,” J. Mol. Spectrosc. 66, 503–505 (1977).
    [Crossref]
  8. L. E. Berg, L. Klynning, and H. Martin, “Observations of two-photon absorption in gaseous CaCl: a study of the D2∑ and X2∑ states,” Phys. Scr. 18, 61–64 (1978).
    [Crossref]
  9. W. J. Childs, D. R. Cok, L. S. Goodman, and O. Poulsen, “Investigation of unresolved hfs splittings in the B2∑ state of CaCl using rf-pumped laser double-resonance spectroscopy,” Phys. Rev. Lett. 47, 1389–1391 (1981).
    [Crossref]
  10. P. J. Dagdigian, H. W. Cruse, and R. N. Zare, “Radiative lifetimes of the alkaline-earth monohalides,” J. Chem. Phys. 60, 2330–2339 (1974).
    [Crossref]
  11. W. J. Childs, D. R. Cok, G. L. Goodman, and L. S. Goodman, “Hyperfine and spin–rotational structure of CaBr X2∑ (v = 0) by molecular beam laser-rf double resonance,” J. Chem. Phys. 75, 501–507 (1981).
    [Crossref]
  12. W. J. Childs, D. R. Cok, and L. S. Goodman, “Determination of dipole and quadrupole hfs in the excited B2∑ state of Ca79Br and Ca81Br,” Can. J. Phys. 59, 1308–1312 (1981).
    [Crossref]

1982 (1)

W. J. Childs, D. R. Cok, and L. S. Goodman, “Hyperfine studies of the X2∑ ground state of Ca35Cl and Ca37Cl by molecular-beam laser-rf double resonance,” J. Chem. Phys. (1982).

1981 (4)

P. F. Bernath, B. Pinchemel, and R. W. Field, “The hyperfine structure of the calcium monohalides,” J. Chem. Phys. 74, 5508–5515 (1981).
[Crossref]

W. J. Childs, D. R. Cok, L. S. Goodman, and O. Poulsen, “Investigation of unresolved hfs splittings in the B2∑ state of CaCl using rf-pumped laser double-resonance spectroscopy,” Phys. Rev. Lett. 47, 1389–1391 (1981).
[Crossref]

W. J. Childs, D. R. Cok, G. L. Goodman, and L. S. Goodman, “Hyperfine and spin–rotational structure of CaBr X2∑ (v = 0) by molecular beam laser-rf double resonance,” J. Chem. Phys. 75, 501–507 (1981).
[Crossref]

W. J. Childs, D. R. Cok, and L. S. Goodman, “Determination of dipole and quadrupole hfs in the excited B2∑ state of Ca79Br and Ca81Br,” Can. J. Phys. 59, 1308–1312 (1981).
[Crossref]

1980 (2)

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigation of CaCl. II. Rotational analysis of the B2∑ ↔ X2∑ transitions,” Phys. Scr. 22, 216–220 (1980).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigations of CaCl. I. Rotational analysis of the A2Π ↔ X2∑ transitions,” Phys. Scr. 21, 173–178 (1980).
[Crossref]

1978 (2)

J. M. Brown, H. Martin, and F. D. Wayne, “A study of the A2Π ↔ X2∑ system of CaCl by saturation spectroscopy,” Chem. Phys. Lett. 55, 67–70 (1978).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Observations of two-photon absorption in gaseous CaCl: a study of the D2∑ and X2∑ states,” Phys. Scr. 18, 61–64 (1978).
[Crossref]

1977 (2)

P. J. Domaille, T. C. Steimle, N. B. Wong, and D. O. Harris, “High-resolution laser excitation spectroscopy analysis of the B2∑ ↔ X2∑ system of CaCl,” J. Mol. Spectrosc. 65, 354–365 (1977).
[Crossref]

P. J. Domaille, T. C. Steimle, and D. O. Harris, “The rotational spectrum of the X2∑ state of the Ca35Cl radical using laser-microwave optical double resonance,” J. Mol. Spectrosc. 66, 503–505 (1977).
[Crossref]

1974 (1)

P. J. Dagdigian, H. W. Cruse, and R. N. Zare, “Radiative lifetimes of the alkaline-earth monohalides,” J. Chem. Phys. 60, 2330–2339 (1974).
[Crossref]

Berg, L. E.

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigation of CaCl. II. Rotational analysis of the B2∑ ↔ X2∑ transitions,” Phys. Scr. 22, 216–220 (1980).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigations of CaCl. I. Rotational analysis of the A2Π ↔ X2∑ transitions,” Phys. Scr. 21, 173–178 (1980).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Observations of two-photon absorption in gaseous CaCl: a study of the D2∑ and X2∑ states,” Phys. Scr. 18, 61–64 (1978).
[Crossref]

Bernath, P. F.

P. F. Bernath, B. Pinchemel, and R. W. Field, “The hyperfine structure of the calcium monohalides,” J. Chem. Phys. 74, 5508–5515 (1981).
[Crossref]

Brown, J. M.

J. M. Brown, H. Martin, and F. D. Wayne, “A study of the A2Π ↔ X2∑ system of CaCl by saturation spectroscopy,” Chem. Phys. Lett. 55, 67–70 (1978).
[Crossref]

Childs, W. J.

W. J. Childs, D. R. Cok, and L. S. Goodman, “Hyperfine studies of the X2∑ ground state of Ca35Cl and Ca37Cl by molecular-beam laser-rf double resonance,” J. Chem. Phys. (1982).

W. J. Childs, D. R. Cok, L. S. Goodman, and O. Poulsen, “Investigation of unresolved hfs splittings in the B2∑ state of CaCl using rf-pumped laser double-resonance spectroscopy,” Phys. Rev. Lett. 47, 1389–1391 (1981).
[Crossref]

W. J. Childs, D. R. Cok, G. L. Goodman, and L. S. Goodman, “Hyperfine and spin–rotational structure of CaBr X2∑ (v = 0) by molecular beam laser-rf double resonance,” J. Chem. Phys. 75, 501–507 (1981).
[Crossref]

W. J. Childs, D. R. Cok, and L. S. Goodman, “Determination of dipole and quadrupole hfs in the excited B2∑ state of Ca79Br and Ca81Br,” Can. J. Phys. 59, 1308–1312 (1981).
[Crossref]

Cok, D. R.

W. J. Childs, D. R. Cok, and L. S. Goodman, “Hyperfine studies of the X2∑ ground state of Ca35Cl and Ca37Cl by molecular-beam laser-rf double resonance,” J. Chem. Phys. (1982).

W. J. Childs, D. R. Cok, and L. S. Goodman, “Determination of dipole and quadrupole hfs in the excited B2∑ state of Ca79Br and Ca81Br,” Can. J. Phys. 59, 1308–1312 (1981).
[Crossref]

W. J. Childs, D. R. Cok, G. L. Goodman, and L. S. Goodman, “Hyperfine and spin–rotational structure of CaBr X2∑ (v = 0) by molecular beam laser-rf double resonance,” J. Chem. Phys. 75, 501–507 (1981).
[Crossref]

W. J. Childs, D. R. Cok, L. S. Goodman, and O. Poulsen, “Investigation of unresolved hfs splittings in the B2∑ state of CaCl using rf-pumped laser double-resonance spectroscopy,” Phys. Rev. Lett. 47, 1389–1391 (1981).
[Crossref]

Cruse, H. W.

P. J. Dagdigian, H. W. Cruse, and R. N. Zare, “Radiative lifetimes of the alkaline-earth monohalides,” J. Chem. Phys. 60, 2330–2339 (1974).
[Crossref]

Dagdigian, P. J.

P. J. Dagdigian, H. W. Cruse, and R. N. Zare, “Radiative lifetimes of the alkaline-earth monohalides,” J. Chem. Phys. 60, 2330–2339 (1974).
[Crossref]

Domaille, P. J.

P. J. Domaille, T. C. Steimle, N. B. Wong, and D. O. Harris, “High-resolution laser excitation spectroscopy analysis of the B2∑ ↔ X2∑ system of CaCl,” J. Mol. Spectrosc. 65, 354–365 (1977).
[Crossref]

P. J. Domaille, T. C. Steimle, and D. O. Harris, “The rotational spectrum of the X2∑ state of the Ca35Cl radical using laser-microwave optical double resonance,” J. Mol. Spectrosc. 66, 503–505 (1977).
[Crossref]

Field, R. W.

P. F. Bernath, B. Pinchemel, and R. W. Field, “The hyperfine structure of the calcium monohalides,” J. Chem. Phys. 74, 5508–5515 (1981).
[Crossref]

Goodman, G. L.

W. J. Childs, D. R. Cok, G. L. Goodman, and L. S. Goodman, “Hyperfine and spin–rotational structure of CaBr X2∑ (v = 0) by molecular beam laser-rf double resonance,” J. Chem. Phys. 75, 501–507 (1981).
[Crossref]

Goodman, L. S.

W. J. Childs, D. R. Cok, and L. S. Goodman, “Hyperfine studies of the X2∑ ground state of Ca35Cl and Ca37Cl by molecular-beam laser-rf double resonance,” J. Chem. Phys. (1982).

W. J. Childs, D. R. Cok, G. L. Goodman, and L. S. Goodman, “Hyperfine and spin–rotational structure of CaBr X2∑ (v = 0) by molecular beam laser-rf double resonance,” J. Chem. Phys. 75, 501–507 (1981).
[Crossref]

W. J. Childs, D. R. Cok, and L. S. Goodman, “Determination of dipole and quadrupole hfs in the excited B2∑ state of Ca79Br and Ca81Br,” Can. J. Phys. 59, 1308–1312 (1981).
[Crossref]

W. J. Childs, D. R. Cok, L. S. Goodman, and O. Poulsen, “Investigation of unresolved hfs splittings in the B2∑ state of CaCl using rf-pumped laser double-resonance spectroscopy,” Phys. Rev. Lett. 47, 1389–1391 (1981).
[Crossref]

Harris, D. O.

P. J. Domaille, T. C. Steimle, and D. O. Harris, “The rotational spectrum of the X2∑ state of the Ca35Cl radical using laser-microwave optical double resonance,” J. Mol. Spectrosc. 66, 503–505 (1977).
[Crossref]

P. J. Domaille, T. C. Steimle, N. B. Wong, and D. O. Harris, “High-resolution laser excitation spectroscopy analysis of the B2∑ ↔ X2∑ system of CaCl,” J. Mol. Spectrosc. 65, 354–365 (1977).
[Crossref]

Klynning, L.

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigations of CaCl. I. Rotational analysis of the A2Π ↔ X2∑ transitions,” Phys. Scr. 21, 173–178 (1980).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigation of CaCl. II. Rotational analysis of the B2∑ ↔ X2∑ transitions,” Phys. Scr. 22, 216–220 (1980).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Observations of two-photon absorption in gaseous CaCl: a study of the D2∑ and X2∑ states,” Phys. Scr. 18, 61–64 (1978).
[Crossref]

Martin, H.

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigation of CaCl. II. Rotational analysis of the B2∑ ↔ X2∑ transitions,” Phys. Scr. 22, 216–220 (1980).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigations of CaCl. I. Rotational analysis of the A2Π ↔ X2∑ transitions,” Phys. Scr. 21, 173–178 (1980).
[Crossref]

J. M. Brown, H. Martin, and F. D. Wayne, “A study of the A2Π ↔ X2∑ system of CaCl by saturation spectroscopy,” Chem. Phys. Lett. 55, 67–70 (1978).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Observations of two-photon absorption in gaseous CaCl: a study of the D2∑ and X2∑ states,” Phys. Scr. 18, 61–64 (1978).
[Crossref]

Pinchemel, B.

P. F. Bernath, B. Pinchemel, and R. W. Field, “The hyperfine structure of the calcium monohalides,” J. Chem. Phys. 74, 5508–5515 (1981).
[Crossref]

Poulsen, O.

W. J. Childs, D. R. Cok, L. S. Goodman, and O. Poulsen, “Investigation of unresolved hfs splittings in the B2∑ state of CaCl using rf-pumped laser double-resonance spectroscopy,” Phys. Rev. Lett. 47, 1389–1391 (1981).
[Crossref]

Steimle, T. C.

P. J. Domaille, T. C. Steimle, N. B. Wong, and D. O. Harris, “High-resolution laser excitation spectroscopy analysis of the B2∑ ↔ X2∑ system of CaCl,” J. Mol. Spectrosc. 65, 354–365 (1977).
[Crossref]

P. J. Domaille, T. C. Steimle, and D. O. Harris, “The rotational spectrum of the X2∑ state of the Ca35Cl radical using laser-microwave optical double resonance,” J. Mol. Spectrosc. 66, 503–505 (1977).
[Crossref]

Wayne, F. D.

J. M. Brown, H. Martin, and F. D. Wayne, “A study of the A2Π ↔ X2∑ system of CaCl by saturation spectroscopy,” Chem. Phys. Lett. 55, 67–70 (1978).
[Crossref]

Wong, N. B.

P. J. Domaille, T. C. Steimle, N. B. Wong, and D. O. Harris, “High-resolution laser excitation spectroscopy analysis of the B2∑ ↔ X2∑ system of CaCl,” J. Mol. Spectrosc. 65, 354–365 (1977).
[Crossref]

Zare, R. N.

P. J. Dagdigian, H. W. Cruse, and R. N. Zare, “Radiative lifetimes of the alkaline-earth monohalides,” J. Chem. Phys. 60, 2330–2339 (1974).
[Crossref]

Can. J. Phys. (1)

W. J. Childs, D. R. Cok, and L. S. Goodman, “Determination of dipole and quadrupole hfs in the excited B2∑ state of Ca79Br and Ca81Br,” Can. J. Phys. 59, 1308–1312 (1981).
[Crossref]

Chem. Phys. Lett. (1)

J. M. Brown, H. Martin, and F. D. Wayne, “A study of the A2Π ↔ X2∑ system of CaCl by saturation spectroscopy,” Chem. Phys. Lett. 55, 67–70 (1978).
[Crossref]

J. Chem. Phys. (4)

P. F. Bernath, B. Pinchemel, and R. W. Field, “The hyperfine structure of the calcium monohalides,” J. Chem. Phys. 74, 5508–5515 (1981).
[Crossref]

W. J. Childs, D. R. Cok, and L. S. Goodman, “Hyperfine studies of the X2∑ ground state of Ca35Cl and Ca37Cl by molecular-beam laser-rf double resonance,” J. Chem. Phys. (1982).

P. J. Dagdigian, H. W. Cruse, and R. N. Zare, “Radiative lifetimes of the alkaline-earth monohalides,” J. Chem. Phys. 60, 2330–2339 (1974).
[Crossref]

W. J. Childs, D. R. Cok, G. L. Goodman, and L. S. Goodman, “Hyperfine and spin–rotational structure of CaBr X2∑ (v = 0) by molecular beam laser-rf double resonance,” J. Chem. Phys. 75, 501–507 (1981).
[Crossref]

J. Mol. Spectrosc. (2)

P. J. Domaille, T. C. Steimle, N. B. Wong, and D. O. Harris, “High-resolution laser excitation spectroscopy analysis of the B2∑ ↔ X2∑ system of CaCl,” J. Mol. Spectrosc. 65, 354–365 (1977).
[Crossref]

P. J. Domaille, T. C. Steimle, and D. O. Harris, “The rotational spectrum of the X2∑ state of the Ca35Cl radical using laser-microwave optical double resonance,” J. Mol. Spectrosc. 66, 503–505 (1977).
[Crossref]

Phys. Rev. Lett. (1)

W. J. Childs, D. R. Cok, L. S. Goodman, and O. Poulsen, “Investigation of unresolved hfs splittings in the B2∑ state of CaCl using rf-pumped laser double-resonance spectroscopy,” Phys. Rev. Lett. 47, 1389–1391 (1981).
[Crossref]

Phys. Scr. (3)

L. E. Berg, L. Klynning, and H. Martin, “Observations of two-photon absorption in gaseous CaCl: a study of the D2∑ and X2∑ states,” Phys. Scr. 18, 61–64 (1978).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigation of CaCl. II. Rotational analysis of the B2∑ ↔ X2∑ transitions,” Phys. Scr. 22, 216–220 (1980).
[Crossref]

L. E. Berg, L. Klynning, and H. Martin, “Laser-spectroscopic investigations of CaCl. I. Rotational analysis of the A2Π ↔ X2∑ transitions,” Phys. Scr. 21, 173–178 (1980).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Doppler-free laser-fluorescence scan of a CaCl molecular beam near 6169.8 Å. The transitions shown are members of the A2Π ↔ X2+, (0, 0) band. The line R2 (N″ = 101) was identified for Ca35Cl by laser-rf double-resonance methods as described in the text. The line Q21(101) lies to the red by the X2+ spin–rotation splitting for N″ = 101, v″ = 0. The four hfs components of R2 (101), although unresolved optically, are resolved by the double-resonance method. The observed linewidth of the optical line is 36 MHz.

Fig. 2
Fig. 2

Energy levels and transitions pertinent to the present investigation. The R2(101) and Q21(101) A ↔ X optical lines and several rf transitions within the N″ = 101, v″ = 0 manifold of the X2+ Ca35Cl electronic ground state are shown. The hfs of the A state is very small compared with that of the X state.

Fig. 3
Fig. 3

Spectra obtained simultaneously while the laser frequency was scanned digitally through R2(101). (a) Fluroescence intensity with the pump laser beam on but without application of rf; a calibration fringe from the stabilized Fabry–Perot interferometer is shown above the curve. The lower figures show the increase in fluorescence caused by application of rf frequency: (b) ν1,(c) ν2, (d) ν3, and (e) ν4, as identified in Fig. 2. The separations of the four hfs components of the optical line follow immediately.

Tables (1)

Tables Icon

Table 1 Predicted and Observed Values of the Four X2+, N″ = 101, v″ = 0 rf Transitions Shown in Fig. 2a