Abstract

Scattering from cylindrical inhomogeneities immersed inside a dielectric-slab waveguide is investigated analytically. A volume integral equation technique based on Green’s function theory in regions with planar boundaries is used to formulate the problem. For the case of circularly inhomogeneous shapes, an analytical solution is developed when |<i>b</i>(<i>k</i><sub>1</sub> - <i>k</i><sub>2</sub>)| < 1, where <i>k</i><sub>1</sub> - <i>k</i><sub>2</sub> is the difference between the wave numbers of the slab and the circular inhomogeneity whose radius is <i>b</i>. Analytical expressions for the reflection and transmission coefficients in the slab, when a guided surface mode is incident upon the inhomogeneity from the left, are derived up to order [<i>b</i>(<i>k</i><sub>1</sub> - <i>k</i><sub>2</sub>)]<sup>3</sup>. Numerical results are computed and plotted for several cases.

© 1982 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Safaai-Jazi and G. L. Yip, "Scattering from an off-axis inhomogeneity in step index optical fiber: radiation loss," J. Opt. Soc. Am. 70, 40–52 (1980).
  2. N. Morita and N. Kumagai, "Scattering and mode conversion of guided modes by a spherical object in an optical fiber," IEEE Trans. Microwave Theory Tech. MTT-28, 137–141 (1980).
  3. N. K. Uzunoglu, "Scattering from inhomogeneities inside a fiber waveguide," J. Opt. Soc. Am. 71, 259–273 (1981).
  4. N. Morita, "Scattering and mode conversion of guided modes of a slab waveguide by a circular cylinder," IEE Proc. Microwave Opt. Antennas 127, 263–269 (1980).
  5. R. A. Meyer and A. Brunsting, "Light scattering from nucleated biological cells," Biophys. J. 15, 191–203 (1975).
  6. P. R. Shapiro, "Interstellar polarization magnetite dust," Astrophys. J. 201, 151–164 (1975).
  7. B. S. Guru and K. M. Chen, "Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies," IEEE Trans. Microwave Theory Tech. MTT-24, 433–440 (1976).
  8. R. M. Whitmer, "Fields in nonmetallic waveguides," Proc. IRE 36, 1105–1109 (1948).
  9. R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960), Chap. 11.
  10. A. R. Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949).
  11. R. Mittra, ed., Computer Techniques for Electromagnetics (Pergamon, New York, 1973).
  12. D. S. Jones, Theory of Electromagnetism (Pergamon, Oxford, 1964).
  13. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), p. 358.
  14. R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).
  15. D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1972).

1981 (1)

1980 (3)

N. Morita and N. Kumagai, "Scattering and mode conversion of guided modes by a spherical object in an optical fiber," IEEE Trans. Microwave Theory Tech. MTT-28, 137–141 (1980).

A. Safaai-Jazi and G. L. Yip, "Scattering from an off-axis inhomogeneity in step index optical fiber: radiation loss," J. Opt. Soc. Am. 70, 40–52 (1980).

N. Morita, "Scattering and mode conversion of guided modes of a slab waveguide by a circular cylinder," IEE Proc. Microwave Opt. Antennas 127, 263–269 (1980).

1976 (1)

B. S. Guru and K. M. Chen, "Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies," IEEE Trans. Microwave Theory Tech. MTT-24, 433–440 (1976).

1975 (2)

R. A. Meyer and A. Brunsting, "Light scattering from nucleated biological cells," Biophys. J. 15, 191–203 (1975).

P. R. Shapiro, "Interstellar polarization magnetite dust," Astrophys. J. 201, 151–164 (1975).

1948 (1)

R. M. Whitmer, "Fields in nonmetallic waveguides," Proc. IRE 36, 1105–1109 (1948).

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), p. 358.

Brunsting, A.

R. A. Meyer and A. Brunsting, "Light scattering from nucleated biological cells," Biophys. J. 15, 191–203 (1975).

Chen, K. M.

B. S. Guru and K. M. Chen, "Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies," IEEE Trans. Microwave Theory Tech. MTT-24, 433–440 (1976).

Collin, R. E.

R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960), Chap. 11.

Guru, B. S.

B. S. Guru and K. M. Chen, "Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies," IEEE Trans. Microwave Theory Tech. MTT-24, 433–440 (1976).

Harrington, R. F.

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

Jones, D. S.

D. S. Jones, Theory of Electromagnetism (Pergamon, Oxford, 1964).

Kumagai, N.

N. Morita and N. Kumagai, "Scattering and mode conversion of guided modes by a spherical object in an optical fiber," IEEE Trans. Microwave Theory Tech. MTT-28, 137–141 (1980).

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1972).

Meyer, R. A.

R. A. Meyer and A. Brunsting, "Light scattering from nucleated biological cells," Biophys. J. 15, 191–203 (1975).

Morita, N.

N. Morita, "Scattering and mode conversion of guided modes of a slab waveguide by a circular cylinder," IEE Proc. Microwave Opt. Antennas 127, 263–269 (1980).

N. Morita and N. Kumagai, "Scattering and mode conversion of guided modes by a spherical object in an optical fiber," IEEE Trans. Microwave Theory Tech. MTT-28, 137–141 (1980).

Safaai-Jazi, A.

Shapiro, P. R.

P. R. Shapiro, "Interstellar polarization magnetite dust," Astrophys. J. 201, 151–164 (1975).

Sommerfeld, A. R.

A. R. Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949).

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), p. 358.

Uzunoglu, N. K.

Whitmer, R. M.

R. M. Whitmer, "Fields in nonmetallic waveguides," Proc. IRE 36, 1105–1109 (1948).

Yip, G. L.

Astrophys. J. (1)

P. R. Shapiro, "Interstellar polarization magnetite dust," Astrophys. J. 201, 151–164 (1975).

Biophys. J. (1)

R. A. Meyer and A. Brunsting, "Light scattering from nucleated biological cells," Biophys. J. 15, 191–203 (1975).

IEE Proc. Microwave Opt. Antennas (1)

N. Morita, "Scattering and mode conversion of guided modes of a slab waveguide by a circular cylinder," IEE Proc. Microwave Opt. Antennas 127, 263–269 (1980).

IEEE Trans. Microwave Theory Tech. (2)

N. Morita and N. Kumagai, "Scattering and mode conversion of guided modes by a spherical object in an optical fiber," IEEE Trans. Microwave Theory Tech. MTT-28, 137–141 (1980).

B. S. Guru and K. M. Chen, "Experimental and theoretical studies on electromagnetic fields induced inside finite biological bodies," IEEE Trans. Microwave Theory Tech. MTT-24, 433–440 (1976).

J. Opt. Soc. Am. (2)

Proc. IRE (1)

R. M. Whitmer, "Fields in nonmetallic waveguides," Proc. IRE 36, 1105–1109 (1948).

Other (7)

R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960), Chap. 11.

A. R. Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949).

R. Mittra, ed., Computer Techniques for Electromagnetics (Pergamon, New York, 1973).

D. S. Jones, Theory of Electromagnetism (Pergamon, Oxford, 1964).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), p. 358.

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.