Abstract

The spectrum of Y iv was observed in the region from 300 to 5000 Å with the 10.7-m normal-incidence vacuum spectrograph and the 10.7-m Eagle spectrograph in air at the National Bureau of Standards. The light source was a sliding spark discharge. About 560 lines were classified as transitions between 129 energy levels. The observed level system (Kr i isoelectronic sequence) includes nearly all levels of the 4s24p6, 4s24p55s, 6s, 7s, 4d, 5d, 6d, 4f, 5f, 5g, 6g, and 4s4p64d configurations. About 190 lines remain unclassified. All observed configurations have been theoretically interpreted. The energy parameters determined by least-squares fits to the observed levels are compared with Hartree–Fock calculations. The ionization energy as derived from the 4p5ng (n = 5, 6) levels is 488 830 ± 20 cm−1 (60.608 ± 0.002 eV).

© 1982 Optical Society of America

Full Article  |  PDF Article

Corrections

Gabriel L. Epstein and Joseph Reader, "Spectrum and energy levels of triply ionized yttrium (Y iv): erratum," J. Opt. Soc. Am. 72, 1100-1102 (1982)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-72-8-1100

References

  • View by:
  • |
  • |
  • |

  1. G. L. Epstein and J. Reader, “Resonance lines of Y iv and La iv,” J. Opt. Soc. Am. 59, 1525 (1969).
  2. J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the vacuum ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
    [Crossref]
  3. C. B. Ross, “Wavelengths and energy levels of singly ionized copper, Cu ii,” Los Alamos Scientific Laboratory rep. no. 4498 (National Technical Information Service, Springfield, Va., 1970).
  4. H. M. Crosswhite, “The iron-neon hollow cathode spectrum,” J. Res. Nat. Bur. Stand. Sect. A 79, 17–69 (1975).
    [Crossref]
  5. A. Giachetti, R. W. Stanley, and R. Zalubas, “Proposed secondary-standard wavelengths in the spectrum of thorium,” J. Opt. Soc. Am. 60, 474–489 (1970).
    [Crossref]
  6. R. L. Kelly and L. J. Palumbo, “Atomic and ionic emission lines below 2000 angstroms—hydrogen through krypton,” Naval Research Laboratory rep. no. 7599 (U.S. Government Printing Office, Washington, D.C., 1973).
  7. B. A. Palmer, “The first spectrum of yttrium and an automatic comparator for its measurement,” Ph.D. Thesis, Purdue University, 1977 (University Microfilms International, Ann Arbor, Mich. 48106, order no. 77-30), p. 119.
  8. R. L. Kelly, “Atomic emission lines in the near ultraviolet; hydrogen through krypton,” NASA Technical Memorandum 80268 (National Technical Information Service, Springfield, Va., 1979).
  9. C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs of atomic structure calculations,” Argonne National Laboratory rep. no. 7404 (National Technical Information Service, Springfield, Va., 1968).
    [Crossref]
  10. J. Reader and G. L. Epstein, “Zeeman effect and revised analysis of singly ionized rubidium (Rb ii),” J. Opt. Soc. Am. 63, 1153–1167 (1973).
    [Crossref]
  11. J. Reader, “Spectrum and energy levels of singly ionized rubidium (Rb ii),” J. Opt. Soc. Am. 65, 286–301 (1975).
    [Crossref]
  12. W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
    [Crossref]
  13. J. E. Hansen and W. Persson, “Configuration interaction in the spectrum of Sr iii,” Phys. Scr. 8, 279–284 (1973).
    [Crossref]
  14. Optimization of the level values was done with the computer program elcalc, provided by L. J. Radziemski, Los Alamos National Laboratory, Los Alamos, N.M. 87544.
  15. J. Reader and A. Ryabtsev, “3p63d8 − 3p53d9 transitions in Sr xiii, Y xiv, Zr xv, Nb xvi, and Mo xvii,” J. Opt. Soc. Am. 71, 231–237 (1981).
    [Crossref]
  16. J. Reader and N. Acquista, “Spectrum and energy levels of four-times ionized zirconium (Zr v),” J. Opt. Soc. Am. 69, 239–253 (1979).
    [Crossref]
  17. N. Acquista and J. Reader, “Spectrum and energy levels of triply ionized zirconium (Zr iv),” J. Opt. Soc. Am. 70, 789–792, (1980).
    [Crossref]
  18. J. E. Hansen, W. Persson, and A. Borgström, “3s 3p63d− 3s23p5nf interaction in Ca iii and identification of the 3s 3p63d configuration,” Phys. Scr. 11, 31–37 (1975).
    [Crossref]
  19. L. Å. Svensson, “The spectrum of four-times-ionized titanium, Ti v,” Phys. Scr. 13, 235–239 (1976).
    [Crossref]
  20. J. O. Ekberg, “The spectrum of five-times-ionized vanadium,” Phys. Scr. 13, 111–116 (1976).
    [Crossref]
  21. J. O. Ekberg, “The spectrum of six-times-ionized chromium, Cr vii,” Phys. Scr. 13, 245–249 (1976).
    [Crossref]

1981 (1)

1980 (1)

1979 (1)

1976 (3)

L. Å. Svensson, “The spectrum of four-times-ionized titanium, Ti v,” Phys. Scr. 13, 235–239 (1976).
[Crossref]

J. O. Ekberg, “The spectrum of five-times-ionized vanadium,” Phys. Scr. 13, 111–116 (1976).
[Crossref]

J. O. Ekberg, “The spectrum of six-times-ionized chromium, Cr vii,” Phys. Scr. 13, 245–249 (1976).
[Crossref]

1975 (3)

J. E. Hansen, W. Persson, and A. Borgström, “3s 3p63d− 3s23p5nf interaction in Ca iii and identification of the 3s 3p63d configuration,” Phys. Scr. 11, 31–37 (1975).
[Crossref]

H. M. Crosswhite, “The iron-neon hollow cathode spectrum,” J. Res. Nat. Bur. Stand. Sect. A 79, 17–69 (1975).
[Crossref]

J. Reader, “Spectrum and energy levels of singly ionized rubidium (Rb ii),” J. Opt. Soc. Am. 65, 286–301 (1975).
[Crossref]

1973 (2)

J. Reader and G. L. Epstein, “Zeeman effect and revised analysis of singly ionized rubidium (Rb ii),” J. Opt. Soc. Am. 63, 1153–1167 (1973).
[Crossref]

J. E. Hansen and W. Persson, “Configuration interaction in the spectrum of Sr iii,” Phys. Scr. 8, 279–284 (1973).
[Crossref]

1972 (2)

1970 (1)

1969 (1)

G. L. Epstein and J. Reader, “Resonance lines of Y iv and La iv,” J. Opt. Soc. Am. 59, 1525 (1969).

1963 (1)

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs of atomic structure calculations,” Argonne National Laboratory rep. no. 7404 (National Technical Information Service, Springfield, Va., 1968).
[Crossref]

Acquista, N.

Borgström, A.

J. E. Hansen, W. Persson, and A. Borgström, “3s 3p63d− 3s23p5nf interaction in Ca iii and identification of the 3s 3p63d configuration,” Phys. Scr. 11, 31–37 (1975).
[Crossref]

Crosswhite, H. M.

H. M. Crosswhite, “The iron-neon hollow cathode spectrum,” J. Res. Nat. Bur. Stand. Sect. A 79, 17–69 (1975).
[Crossref]

Ekberg, J. O.

J. O. Ekberg, “The spectrum of five-times-ionized vanadium,” Phys. Scr. 13, 111–116 (1976).
[Crossref]

J. O. Ekberg, “The spectrum of six-times-ionized chromium, Cr vii,” Phys. Scr. 13, 245–249 (1976).
[Crossref]

J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the vacuum ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
[Crossref]

Epstein, G. L.

Froese, C.

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs of atomic structure calculations,” Argonne National Laboratory rep. no. 7404 (National Technical Information Service, Springfield, Va., 1968).
[Crossref]

Giachetti, A.

Hansen, J. E.

J. E. Hansen, W. Persson, and A. Borgström, “3s 3p63d− 3s23p5nf interaction in Ca iii and identification of the 3s 3p63d configuration,” Phys. Scr. 11, 31–37 (1975).
[Crossref]

J. E. Hansen and W. Persson, “Configuration interaction in the spectrum of Sr iii,” Phys. Scr. 8, 279–284 (1973).
[Crossref]

Kelly, R. L.

R. L. Kelly, “Atomic emission lines in the near ultraviolet; hydrogen through krypton,” NASA Technical Memorandum 80268 (National Technical Information Service, Springfield, Va., 1979).

R. L. Kelly and L. J. Palumbo, “Atomic and ionic emission lines below 2000 angstroms—hydrogen through krypton,” Naval Research Laboratory rep. no. 7599 (U.S. Government Printing Office, Washington, D.C., 1973).

Palmer, B. A.

B. A. Palmer, “The first spectrum of yttrium and an automatic comparator for its measurement,” Ph.D. Thesis, Purdue University, 1977 (University Microfilms International, Ann Arbor, Mich. 48106, order no. 77-30), p. 119.

Palumbo, L. J.

R. L. Kelly and L. J. Palumbo, “Atomic and ionic emission lines below 2000 angstroms—hydrogen through krypton,” Naval Research Laboratory rep. no. 7599 (U.S. Government Printing Office, Washington, D.C., 1973).

Persson, W.

J. E. Hansen, W. Persson, and A. Borgström, “3s 3p63d− 3s23p5nf interaction in Ca iii and identification of the 3s 3p63d configuration,” Phys. Scr. 11, 31–37 (1975).
[Crossref]

J. E. Hansen and W. Persson, “Configuration interaction in the spectrum of Sr iii,” Phys. Scr. 8, 279–284 (1973).
[Crossref]

W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
[Crossref]

Radziemski, L. J.

Optimization of the level values was done with the computer program elcalc, provided by L. J. Radziemski, Los Alamos National Laboratory, Los Alamos, N.M. 87544.

Reader, J.

Ross, C. B.

C. B. Ross, “Wavelengths and energy levels of singly ionized copper, Cu ii,” Los Alamos Scientific Laboratory rep. no. 4498 (National Technical Information Service, Springfield, Va., 1970).

Ryabtsev, A.

Stanley, R. W.

Svensson, L. Å.

L. Å. Svensson, “The spectrum of four-times-ionized titanium, Ti v,” Phys. Scr. 13, 235–239 (1976).
[Crossref]

Valind, S.

W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
[Crossref]

Zalubas, R.

Can. J. Phys. (1)

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs of atomic structure calculations,” Argonne National Laboratory rep. no. 7404 (National Technical Information Service, Springfield, Va., 1968).
[Crossref]

J. Opt. Soc. Am. (8)

J. Res. Nat. Bur. Stand. Sect. A (1)

H. M. Crosswhite, “The iron-neon hollow cathode spectrum,” J. Res. Nat. Bur. Stand. Sect. A 79, 17–69 (1975).
[Crossref]

Phys. Scr. (6)

J. E. Hansen, W. Persson, and A. Borgström, “3s 3p63d− 3s23p5nf interaction in Ca iii and identification of the 3s 3p63d configuration,” Phys. Scr. 11, 31–37 (1975).
[Crossref]

L. Å. Svensson, “The spectrum of four-times-ionized titanium, Ti v,” Phys. Scr. 13, 235–239 (1976).
[Crossref]

J. O. Ekberg, “The spectrum of five-times-ionized vanadium,” Phys. Scr. 13, 111–116 (1976).
[Crossref]

J. O. Ekberg, “The spectrum of six-times-ionized chromium, Cr vii,” Phys. Scr. 13, 245–249 (1976).
[Crossref]

W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
[Crossref]

J. E. Hansen and W. Persson, “Configuration interaction in the spectrum of Sr iii,” Phys. Scr. 8, 279–284 (1973).
[Crossref]

Other (5)

Optimization of the level values was done with the computer program elcalc, provided by L. J. Radziemski, Los Alamos National Laboratory, Los Alamos, N.M. 87544.

R. L. Kelly and L. J. Palumbo, “Atomic and ionic emission lines below 2000 angstroms—hydrogen through krypton,” Naval Research Laboratory rep. no. 7599 (U.S. Government Printing Office, Washington, D.C., 1973).

B. A. Palmer, “The first spectrum of yttrium and an automatic comparator for its measurement,” Ph.D. Thesis, Purdue University, 1977 (University Microfilms International, Ann Arbor, Mich. 48106, order no. 77-30), p. 119.

R. L. Kelly, “Atomic emission lines in the near ultraviolet; hydrogen through krypton,” NASA Technical Memorandum 80268 (National Technical Information Service, Springfield, Va., 1979).

C. B. Ross, “Wavelengths and energy levels of singly ionized copper, Cu ii,” Los Alamos Scientific Laboratory rep. no. 4498 (National Technical Information Service, Springfield, Va., 1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Observed configurations and principal transition regions for Y iv.

Fig. 2
Fig. 2

Structure of the 4p54d and 4p55s configuration of Y iv. Heavy lines, 4p54d; dashed lines, 4p55s. The levels of 4p55s are designated in J1l coupling.

Fig. 3
Fig. 3

Structure of the 4p55p configuration of Y iv. The levels are designated in J1l coupling.

Fig. 4
Fig. 4

Structure of the 4p55d and 4p56s configuration of Y iv. Heavy lines, 4p55d; dashed lines, 4p56s. The levels are designated in J1l coupling.

Fig. 5
Fig. 5

Structure of the 4p56d and 4p57s configuration of Y iv. Heavy lines, 4p56d; dashed lines, 4p57s. The levels are designated in J1l coupling.

Fig. 6
Fig. 6

Structure of the 4s24p5(4f + 5f + 6p) + 4s4p64d configurations of Y iv. The 4p54f and 4p55f levels are shown as solid lines, the 4p56p levels as dashed lines, and the 4s4p64d levels as broken lines with dots in the centers. The calculated positions of the 4p56p 1/2 [1/2]0 and the 4p55f 1/2[7/2]3 levels are indicated by thin lines.

Fig. 7
Fig. 7

Structure of the 4p55g configuration of Y iv. The levels are designated in J1l coupling.

Tables (9)

Tables Icon

Table 1 Observed Spectral Lines of Y IVa

Tables Icon

Table 2 Energy Levels of Y iv

Tables Icon

Table 3 Calculated Energy-Level Values (in cm−1) and Percentage Compositions for the 4p5(4d + 5s) Configurations of Y iva

Tables Icon

Table 4 Energy Parameters in cm−1 and Mean Errors Δ of Least-Squares Fits for Y iva

Tables Icon

Table 5 Calculated Energy-Level Values in cm−1 and Percentage Compositions for the 4p55p Configuration of Y iva

Tables Icon

Table 6 Calculated Energy-Level Values in cm−1 and Percentage Compositions for the 4p5(5d + 6s) Configurations of Y iva

Tables Icon

Table 7 Calculated Energy-Level Values (in cm−1) and Percentage Compositions for the 4p5(6d + 7s) Configurations of Y iva

Tables Icon

Table 8 Calculated Energy-Level Values in (cm−1) and Percentage Compositions of the 4s24p5(4f + 5f + 6f + 6p) + 4s4p64d Configurations of Y iva

Tables Icon

Table 9 Calculated Energy-Level Values in cm−1 and Percentage Compositions of the 4p55g Configuration of Y iva