Abstract

A large class of ideal second-stage concentrators is unified by the same formalism based on the edge principle. As a result, useful new second stages may be designed.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970).
    [CrossRef]
  2. R. Winston, “Principles of solar concentrators of a novel design,” Sol. Energy 16, 89–95 (1974).
    [CrossRef]
  3. A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–110 (1976).
    [CrossRef]
  4. R. Winston, “Cone collectors for finite sources,” Appl. Opt. 17, 688–689 (1978).
    [CrossRef] [PubMed]
  5. A. Rabl and R. Winston, “Ideal concentrators for finite sources and restricted exit angles,” Appl. Opt. 16, 2880–2883 (1976).
    [CrossRef]
  6. R. Winston and W. T. Welford, “Design of nonimaging concentrators as second stages in tandem with image-forming first-stage concentrators,” Appl. Opt. 19, 347–351 (1980).
    [CrossRef] [PubMed]
  7. M. Collares-Pereira, A. Rabl, and R. Winston, “Lens mirror combination with maximal concentration,” Appl. Opt. 16, 2677–2683 (1977).
    [CrossRef] [PubMed]
  8. R. Winston and W. T. Welford, “Geometrical vector flux and some new nonimaging concentrators,” J. Opt. Soc. Am. 69, 532–536 (1979).
    [CrossRef]
  9. W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators (Academic, New York, 1978), p. 90.
  10. R. Winston and W. T. Welford, “Two-dimensional concentrators for inhomogeneous media,” J. Opt. Soc. Am. 68, 289–291 (1978).
    [CrossRef]
  11. If the edge rays are not focused at point B but rather produce a coma spread at the focal plane, the rays considered in the design may be the actual edge rays at each point of the reflector rather than the ficitious rays converging to B. Obviously the consequent concentration then would exceed Eq. (1).
  12. W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators (Academic, New York, 1978), p. 94.
  13. P. Greenman, “Geometrical vector flux sinks and ideal flux concentrators,” J. Opt. Soc. Am. 71, 777–779 (1981).
    [CrossRef]

1981 (1)

1980 (1)

1979 (1)

1978 (2)

1977 (1)

1976 (2)

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–110 (1976).
[CrossRef]

A. Rabl and R. Winston, “Ideal concentrators for finite sources and restricted exit angles,” Appl. Opt. 16, 2880–2883 (1976).
[CrossRef]

1974 (1)

R. Winston, “Principles of solar concentrators of a novel design,” Sol. Energy 16, 89–95 (1974).
[CrossRef]

1970 (1)

Collares-Pereira, M.

Greenman, P.

Rabl, A.

M. Collares-Pereira, A. Rabl, and R. Winston, “Lens mirror combination with maximal concentration,” Appl. Opt. 16, 2677–2683 (1977).
[CrossRef] [PubMed]

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–110 (1976).
[CrossRef]

A. Rabl and R. Winston, “Ideal concentrators for finite sources and restricted exit angles,” Appl. Opt. 16, 2880–2883 (1976).
[CrossRef]

Welford, W. T.

Winston, R.

Appl. Opt. (4)

J. Opt. Soc. Am. (4)

Sol. Energy (2)

R. Winston, “Principles of solar concentrators of a novel design,” Sol. Energy 16, 89–95 (1974).
[CrossRef]

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–110 (1976).
[CrossRef]

Other (3)

If the edge rays are not focused at point B but rather produce a coma spread at the focal plane, the rays considered in the design may be the actual edge rays at each point of the reflector rather than the ficitious rays converging to B. Obviously the consequent concentration then would exceed Eq. (1).

W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators (Academic, New York, 1978), p. 94.

W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators (Academic, New York, 1978), p. 90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Primary concentrator AA′, virtual source BB′, and three different convex absorbers at the different locations 1, 2, and 3.

Fig. 2
Fig. 2

Second-stage concentrator designed for a tubular absorber.

Fig. 3
Fig. 3

Second-stage concentrator designed for a flat one-sided absorber.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C 2 = A A / ( A B - A B ) ,
A i + i C ¯ - A B = j h + h C ¯ - j B ,
A j + j h + h C ¯ = A f + f g + g C ¯ ,
A B - A B + i C ¯ = 2 f g + G C ¯
C C ¯ = A B - A B ,
A C - A B = j C - j B ( hyperbola ) ,
A j + j C = A C + C C ( ellipse ) ,