Abstract

We present a relatively simple method by which the amount of self-absorption in laboratory-produced plasmas can be evaluated. As an illustration we apply it here to the evaluation of self-absorption in a U i resonance transition from a hollow-cathode-generated plasma. The method can be generalized to include more-complex situations.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).
  2. R. D. Cowan and G. H. Dicke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948), and reference therein. This review article contains a most detailed treatment of the problem.
    [Crossref]
  3. J. Cooper, “Plasma Spectroscopy,” Rep. Prog. Phys. 29, 35–130 (1966).
    [Crossref]
  4. J. M. Gagné, P. Pianarosa, G. Larin, J. P. Saint-Dizier, and P. Bouchard, “Ionization and excitation of uranium in a hollow-cathode lamp,” Appl. Opt. (to be published).
  5. B. Leblanc, “Etude de la lampe à cathode-creuse come générateur de vapeur d’uranium au niveau fondamental ⁵L60,” Ph.D. Thesis, (Ecole Polytechnique, Université de Montréal, Montréal, 1979).
  6. J. M. Gagné, B. Mongeau, B. Leblanc, J. P. Saint-Dizier, P. Pianarosa, and L. Bertrand, “Production de vapeur d’uranium par pulvérisation cathodique dans une cathode creuse: efficacités relatives des gas Ne, Ar, Kr et concentration à l’ètat ⁵L60,” Appl. Opt. 17, 2507–2510 (1978).
    [Crossref]
  7. J. M. Gagné, B. Leblanc, B. Mongeau, M. Carleer, and L. Bertrand, “Etude par absorption d’un faisceau laser d’une vapeur d’ 238U (⁵L60) obtenue à l’aide d’une lampe à cathode creuse,” Appl. Opt. 18, 1084–1087 (1979)
    [Crossref]

1979 (1)

1978 (1)

1966 (1)

J. Cooper, “Plasma Spectroscopy,” Rep. Prog. Phys. 29, 35–130 (1966).
[Crossref]

1948 (1)

R. D. Cowan and G. H. Dicke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948), and reference therein. This review article contains a most detailed treatment of the problem.
[Crossref]

Bertrand, L.

Bouchard, P.

J. M. Gagné, P. Pianarosa, G. Larin, J. P. Saint-Dizier, and P. Bouchard, “Ionization and excitation of uranium in a hollow-cathode lamp,” Appl. Opt. (to be published).

Carleer, M.

Cooper, J.

J. Cooper, “Plasma Spectroscopy,” Rep. Prog. Phys. 29, 35–130 (1966).
[Crossref]

Cowan, R. D.

R. D. Cowan and G. H. Dicke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948), and reference therein. This review article contains a most detailed treatment of the problem.
[Crossref]

Dicke, G. H.

R. D. Cowan and G. H. Dicke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948), and reference therein. This review article contains a most detailed treatment of the problem.
[Crossref]

Gagné, J. M.

Larin, G.

J. M. Gagné, P. Pianarosa, G. Larin, J. P. Saint-Dizier, and P. Bouchard, “Ionization and excitation of uranium in a hollow-cathode lamp,” Appl. Opt. (to be published).

Leblanc, B.

Mitchell, A. C.

A. C. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).

Mongeau, B.

Pianarosa, P.

Saint-Dizier, J. P.

Zemansky, M. W.

A. C. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).

Appl. Opt. (2)

Rep. Prog. Phys. (1)

J. Cooper, “Plasma Spectroscopy,” Rep. Prog. Phys. 29, 35–130 (1966).
[Crossref]

Rev. Mod. Phys. (1)

R. D. Cowan and G. H. Dicke, “Self-absorption of spectrum lines,” Rev. Mod. Phys. 20, 418–455 (1948), and reference therein. This review article contains a most detailed treatment of the problem.
[Crossref]

Other (3)

A. C. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. Press, Cambridge, 1971).

J. M. Gagné, P. Pianarosa, G. Larin, J. P. Saint-Dizier, and P. Bouchard, “Ionization and excitation of uranium in a hollow-cathode lamp,” Appl. Opt. (to be published).

B. Leblanc, “Etude de la lampe à cathode-creuse come générateur de vapeur d’uranium au niveau fondamental ⁵L60,” Ph.D. Thesis, (Ecole Polytechnique, Université de Montréal, Montréal, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table 1 Buffer Gas, Buffer-Gas Pressure, Current in the Lamp, k0, Self-Absorption, Observed Intensity, and True or Calculated Intensitya

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

1 k ( ν , x ) d I ( ν , x ) d x = - I ( ν , x ) + ( ν , x ) k ( ν , x ) .
d p ν = - k ( ν , x ) d x
d I ( ν , x ) d p ν = I ( ν , x ) - S ν ( x ) .
I ν ( 0 ) = S ν ( 1 - e - p ν ) .
S ν = 2 h ν 3 c 2 ( exp h ν k T e - 1 ) - 1 .
I t obs line I ν ( 0 ) d r = line S ν ( 1 - e - p ν ) d ν .
p ν = p 0 ϕ 0 ϕ ν ,
I t obs = S ν 0 ( 1 - e - p 0 ϕ 0 ϕ ν ) d ν .
I t obs = S ν n = 1 0 ( - P 0 ϕ 0 ) n ϕ ν n n ! d ν .
I t true = S ν p 0 ϕ 0 .
R = I t true - I t obs I t true = 1 - I t obs I t true .
ϕ ν = ϕ 0 exp - ln 2 Δ ν D 2 ( ν - ν 0 )
ϕ 0 = ( ln 2 π ) 1 / 2 1 Δ ν D ,
I t obs = - S ν n = 1 ( - p 0 ) n n ! 0 d ν exp - ln 2 Δ ν D 2 ( ν - ν 0 ) 2 n .
I t obs = - S ν ( π ln 2 ) 1 / 2 Δ ν D n = 1 ( - P 0 ) n n ! n .
R = 1 + n = 1 ( - 1 ) n n ! ( p 0 ) n - 1 n .
p 0 = k 0 d ,
k 0 = 2 Δ ν D ( ln 2 π ) 1 / 2 λ 0 2 8 π g 2 g 1 B τ N .
R = 1 + n = 1 ( - 1 ) n d n - 1 n ! n ( 2 Δ ν D ( ln 2 π ) 1 / 2 λ 0 2 8 π g 2 g 1 B τ N ) n - 1 .