Abstract

Scotopic spectral sensitivity was measured for nine observers (aged 4.5 months to 66 years) from 400 to 650 nm (10-nm steps) by using a 42° naturally viewed stimulus. The dependent measure was the visually evoked cortical-potential amplitude that was phase locked to an 8-Hz flickering stimulus. Sensitivity was similar for all observers at middle and long wavelengths, but at short wavelengths there was a decrease in sensitivity with increasing age. The density of the preretinal ocular media was estimated by subtracting the log scotopic spectral-sensitivity function of each observer from the human rhodopsin-absorbance spectrum when the two sets of curves were pinned at long wavelengths. The density of the infant ocular media was lower than that for adults. To quantify the sequence of ocular-media development, scotopic sensitivity was determined for an additional 42 observers (aged 1 month to 70 years) at two spectral points: 553 nm, where the optic-media density is low, and 405–430 nm, where the density is high. From these data, optic-media density at 400 nm was calculated. Despite substantial individual differences within each age, a clear aging function emerged. Preretinal optic-media density increased monotonically from birth throughout adulthood. Thus optical density at 400 nm differs by about a factor of 22 between the average 1-month-old infant and the average 70-year-old adult.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dalton, “Extraordinary facts relating to the vision of colours: with observations,” Mem. Proc. Manchester Lit. Philos. Soc. 5, 28–45 (1798).
  2. E. Hering, “Ueber individuelle Verschiedenbeiten des Farbensinnes,” Lotos 6, 142–198 (1885).
  3. K. H. Ruddock, “Light transmission through the ocular media and macular pigment and its significance for psychophysical investigation,” in Handbook of Sensory Physiology, Vol. VII/4, Visual Psychophysics, D. Jameson and L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972).
    [CrossRef]
  4. D. V. Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [CrossRef] [PubMed]
  5. G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).
  6. E. Ludvigh and E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).
    [CrossRef]
  7. E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthal. 1, 776–783 (1962).
  8. G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and the other primates,” J. Physiol. (London) 203, 411–417 (1969).
  9. F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
    [CrossRef] [PubMed]
  10. K. E. W. P. Tan, “Vision in the ultraviolet,” Doctoral Thesis (University of Utrecht, Utrecht, The Netherlands, 1971).
  11. S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measures over an extended age range,” Vision Res. 12, 343–346 (1972).
    [CrossRef] [PubMed]
  12. R. M. Boynton, J. M. Enoch, and W. R. Bush, “Physical measures of stray light in excised eyes,” J. Opt. Soc. Am. 44, 879–886 (1954).
    [CrossRef] [PubMed]
  13. A. König, “Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen,” Sitzungsber. K. Preuss. Akad. Wiss. 30, 577–598 (1894).
  14. H. J. A. Dartnall and C. F. Goodeve, “Scotopic luminosity curve and the absorption spectrum of visual purple,” Nature 139, 409–411 (1937).
    [CrossRef]
  15. F. Crescitelli and H. J. A. Dartnall, “Human visual purple,” Nature 172, 195–197 (1953).
    [CrossRef] [PubMed]
  16. G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–226 (1958).
    [CrossRef] [PubMed]
  17. G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
    [CrossRef] [PubMed]
  18. R. E. Dustman and E. C. Beck, “Visually evoked potentials: amplitude changes with age,” Science 151, 1013–1015 (1966).
    [CrossRef] [PubMed]
  19. H. J. A. Dartnall, “Some recent work on visual pigments,” Brit. Med. Bull. 26, 175–178 (1970).
    [PubMed]
  20. W. S. Stiles, “The physical interpretation of the spectral sensitivity curve of the eye,” Trans. Opt. Con. Worshipful Comp. Spectacle Makers, 97–107 (Spectacle Makers’ Company, London, 1948).
  21. R. M. Boynton, “Stray light and the human electroretinogram,” J. Opt. Soc. Am. 43, 442–449 (1953).
    [CrossRef] [PubMed]
  22. J. C. Armaington, “Spectral sensitivity of simultaneous electroretinograms and occipital responses,” Clin. Electroretinography: Vision Res. Suppl. (1966), pp. 225–233.
  23. B. R. Wooten, “Photopic and scotopic contributions to the human visually evoked cortical potential,” Vision Res. 12, 1647–1660 (1972).
    [CrossRef] [PubMed]
  24. M. Kojima and E. Zrenner, “Local and spatial distribution of photopic and scotopic responses in the visual field as reflected in the visually evoked cortical potential (VECP),” Doc. Ophthalmolog. 13, 31–40 (1977).
  25. E. Adachi-Usami, “Scotopic retinal sensitivity in man as determined with visually evoked cortical potentials,” Jpn. J. Physiol. 28, 171–180 (1978).
    [CrossRef] [PubMed]
  26. B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Sect. B 62, 321–334 (1949).
    [CrossRef]
  27. P. Padmos and D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthamol. 11, 783–788 (1972).
  28. D. R. Griffin, R. Hubbard, and G. Wald, “The sensitivity of the human eye to infra-red radiation,” J. Opt. Soc. Am. 37, 546–554 (1947).
    [CrossRef] [PubMed]
  29. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [CrossRef] [PubMed]
  30. S. G. DeGroot and J. W. Gebhard, “Pupil size as determined by adapting luminance,” J. Opt. Soc. Am. 42, 492–495 (1952).
    [CrossRef]
  31. The slope of the RVR function at 441 nm is shallower for both observers in Fig. 3. This peculiarity was not seen for other observers and other responses for these observers.
  32. S. Hecht, C. Haig, and G. Wald, “The dark adaptation of retinal fields of different size and location,” J. Gen. Physiol. 19, 321–337 (1935).
  33. G. B. Arden and R. A. Weale, “Nervous mechanisms and dark-adaptation,” J. Physiol. (London) 125, 417–426 (1954).
  34. E. Wolf and M. J. Zigler, “Location of the break in the dark adaptation curve in relation to pre-exposure brightness and pre-exposure time,” J. Opt. Soc. Am. 44, 875–879 (1954).
    [CrossRef] [PubMed]
  35. M. Aguilar and W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
    [CrossRef]
  36. W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” Anales R. Soc. Esp. Quim. Fis., Ser. A 57, 149–175 (1961).
  37. J. C. Armington, “A component of the human electroretinogram associated with red color vision,” J. Opt. Soc. Am. 42, 393–401 (1952).
    [CrossRef] [PubMed]
  38. L. A. Riggs, R. N. Berry, and M. Wayner, “A comparison of electrical and psychophysical determinations of the spectral sensitivity of the human eye,” J. Opt. Soc. Am. 39, 427–436 (1949).
    [CrossRef] [PubMed]
  39. The optical density of observer LR was interpolated at 400 nm on the basis of the standard curve of Norren and Vos (Ref. 4).
  40. V. Smith and J. Pokorny, Eye Research Laboratories, University of Chicago, Chicago, Illinois 60637 (personal communication). Also see V. Smith and J. Pokorny, “Prediction of color-matching functions,” J. Opt. Soc. Am. 67, 1375 (1977).
  41. W. S. Stiles and J. M. Burch, “N.P.L, colour-matching investigation: final report (1958),” Opt. Acta 6, 1–26 (1959).
  42. W. A. H. Rulshton, “The rhodopsin density in the human rods,” J. Physiol. (London) 134, 30–46 (1956).
  43. M. Alpern and E. N. Pugh, “The density and photosensitivity of human rhodopsin in the living retina,” J. Physiol. (London) 237, 341–370 (1974).
  44. W. H. Dobelle, W. B. Marks, and E. F. MacNichol, “Visual pigment density in single primate foveal cones,” Science 166, 1508–1510 (1969).
    [CrossRef] [PubMed]
  45. Y. LeGrand, Light, Colour and Vision (Wiley, New York, 1957), p. 363.
  46. M. K. Powers, M. Schneck, and D. Y. Teller, “Spectral sensitivity of human infants at absolute visual threshold,” Vision Res. 21, 1005–1016 (1981).
    [CrossRef] [PubMed]
  47. E. Wolf and J. S. Gardiner, “Studies on the scatter of light in the dioptric media of the eye as a basis of visual glare,” Arch. Ophthalmol. 74, 338–345 (1965).
    [CrossRef] [PubMed]
  48. J. Mellerio, “Light absorption and scatter in the human lens,” Vision Res. 11, 129–141 (1971).
    [CrossRef] [PubMed]
  49. R. Weekers, Y. Delmarcelle, J. Luyckx-Bacus, and J. Collignon, “Morphological changes of the lens with age and cataract,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdarm, 1973), pp. 25–40.
  50. V. Kadlecovà, M. Peleška, and A. Vaško, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
    [CrossRef] [PubMed]
  51. The manner in which the data from previous studies were obtained and transformed for presentation in Fig. 12 is deserving of comment. The general procedure was to divide all axial measurements by 1.16 to compare them with measures made for the whole pupil. Also, when density estimates were not reported for 400 nm, the standard template of Norren and Vos was used to interpolate optical density at 400 nm. Special considerations pertaining to each study are as follows: (1) Only two of the three observers of Alpern et al.52 are presented because the density of the third observer exceeded the axis of ordinates in the figure. (2) The data of Boettner and Wolter7 are based only on the lens. (3) The data of Grover and Zigman53 were based on their smooth function (Fig. 1, p. 71) at age intervals of 10 years. (4) Unfortunately, it was not possible to locate an archival report from Said (1959). The values were obtained from Fig. 2 (p. 9) of a chapter by Weale.54 (5) The lens-density estimates of Said and Weale9 are generally considered to be too low at short wavelengths but reliable above 460 nm.4 Therefore, the density at 460 nm was read from Fig. 2 of Weale54 and the density at 400 nm was interpolated from the standard curve. (6) Stiles and Burch41 did not measure ocular-media absorption directly, but rather, it was calculated from color-matching functions. The position to which these data were scaled was taken from Weale.54 (7) Density at 400 nm was read directly from Tan’s 10 Fig. 3 (p. 87). These data represent the averages of five age groups. The age plotted in Fig. 12 was the median for each group. (8) The standard observer of Norren and Vos4 was derived primarily from density estimates for observers between 20 and 30 years of age. The age at which the standard observer is plotted in Fig. 12 is 25 years. (9) Weale’s55 data were obtained from two excised lenses.
  52. M. Alpern, S. Thompson, and M. S. Lee, “Spectral transmittance of visible light by the living human eye,” J. Opt. Soc. Am. 55, 723–727 (1965).
    [CrossRef] [PubMed]
  53. D. Grover and S. Zigman, “Coloration of human lenses by near ultraviolet photo-oxidized tryptophan,” Exp. Eye Res. 13, 70–76 (1972).
    [CrossRef] [PubMed]
  54. R. A. Weale, “The effects of the ageing lens on vision,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdam, 1973), pp. 5–20.
  55. R. A. Weale, “Light absorption by the lens of the human eye,” Opt. Acta 1, 107–110 (1954).
    [CrossRef]
  56. J. S. Werner and B. R. Wooten, “Human infant color vision and color perception,” Infant Behav. Dev. 2, 241–274 (1979).
    [CrossRef]

1981 (1)

M. K. Powers, M. Schneck, and D. Y. Teller, “Spectral sensitivity of human infants at absolute visual threshold,” Vision Res. 21, 1005–1016 (1981).
[CrossRef] [PubMed]

1979 (1)

J. S. Werner and B. R. Wooten, “Human infant color vision and color perception,” Infant Behav. Dev. 2, 241–274 (1979).
[CrossRef]

1978 (1)

E. Adachi-Usami, “Scotopic retinal sensitivity in man as determined with visually evoked cortical potentials,” Jpn. J. Physiol. 28, 171–180 (1978).
[CrossRef] [PubMed]

1977 (1)

M. Kojima and E. Zrenner, “Local and spatial distribution of photopic and scotopic responses in the visual field as reflected in the visually evoked cortical potential (VECP),” Doc. Ophthalmolog. 13, 31–40 (1977).

1974 (2)

M. Alpern and E. N. Pugh, “The density and photosensitivity of human rhodopsin in the living retina,” J. Physiol. (London) 237, 341–370 (1974).

D. V. Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

1972 (4)

S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measures over an extended age range,” Vision Res. 12, 343–346 (1972).
[CrossRef] [PubMed]

B. R. Wooten, “Photopic and scotopic contributions to the human visually evoked cortical potential,” Vision Res. 12, 1647–1660 (1972).
[CrossRef] [PubMed]

P. Padmos and D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthamol. 11, 783–788 (1972).

D. Grover and S. Zigman, “Coloration of human lenses by near ultraviolet photo-oxidized tryptophan,” Exp. Eye Res. 13, 70–76 (1972).
[CrossRef] [PubMed]

1971 (1)

J. Mellerio, “Light absorption and scatter in the human lens,” Vision Res. 11, 129–141 (1971).
[CrossRef] [PubMed]

1970 (1)

H. J. A. Dartnall, “Some recent work on visual pigments,” Brit. Med. Bull. 26, 175–178 (1970).
[PubMed]

1969 (2)

G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and the other primates,” J. Physiol. (London) 203, 411–417 (1969).

W. H. Dobelle, W. B. Marks, and E. F. MacNichol, “Visual pigment density in single primate foveal cones,” Science 166, 1508–1510 (1969).
[CrossRef] [PubMed]

1966 (3)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

R. E. Dustman and E. C. Beck, “Visually evoked potentials: amplitude changes with age,” Science 151, 1013–1015 (1966).
[CrossRef] [PubMed]

J. C. Armaington, “Spectral sensitivity of simultaneous electroretinograms and occipital responses,” Clin. Electroretinography: Vision Res. Suppl. (1966), pp. 225–233.

1965 (2)

E. Wolf and J. S. Gardiner, “Studies on the scatter of light in the dioptric media of the eye as a basis of visual glare,” Arch. Ophthalmol. 74, 338–345 (1965).
[CrossRef] [PubMed]

M. Alpern, S. Thompson, and M. S. Lee, “Spectral transmittance of visible light by the living human eye,” J. Opt. Soc. Am. 55, 723–727 (1965).
[CrossRef] [PubMed]

1962 (1)

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthal. 1, 776–783 (1962).

1961 (1)

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” Anales R. Soc. Esp. Quim. Fis., Ser. A 57, 149–175 (1961).

1959 (1)

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

1958 (3)

G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–226 (1958).
[CrossRef] [PubMed]

W. S. Stiles and J. M. Burch, “N.P.L, colour-matching investigation: final report (1958),” Opt. Acta 6, 1–26 (1959).

V. Kadlecovà, M. Peleška, and A. Vaško, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef] [PubMed]

1956 (1)

W. A. H. Rulshton, “The rhodopsin density in the human rods,” J. Physiol. (London) 134, 30–46 (1956).

1954 (5)

G. B. Arden and R. A. Weale, “Nervous mechanisms and dark-adaptation,” J. Physiol. (London) 125, 417–426 (1954).

E. Wolf and M. J. Zigler, “Location of the break in the dark adaptation curve in relation to pre-exposure brightness and pre-exposure time,” J. Opt. Soc. Am. 44, 875–879 (1954).
[CrossRef] [PubMed]

M. Aguilar and W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

R. M. Boynton, J. M. Enoch, and W. R. Bush, “Physical measures of stray light in excised eyes,” J. Opt. Soc. Am. 44, 879–886 (1954).
[CrossRef] [PubMed]

R. A. Weale, “Light absorption by the lens of the human eye,” Opt. Acta 1, 107–110 (1954).
[CrossRef]

1953 (2)

F. Crescitelli and H. J. A. Dartnall, “Human visual purple,” Nature 172, 195–197 (1953).
[CrossRef] [PubMed]

R. M. Boynton, “Stray light and the human electroretinogram,” J. Opt. Soc. Am. 43, 442–449 (1953).
[CrossRef] [PubMed]

1952 (2)

1949 (2)

1947 (1)

1945 (1)

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

1938 (1)

E. Ludvigh and E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).
[CrossRef]

1937 (1)

H. J. A. Dartnall and C. F. Goodeve, “Scotopic luminosity curve and the absorption spectrum of visual purple,” Nature 139, 409–411 (1937).
[CrossRef]

1935 (1)

S. Hecht, C. Haig, and G. Wald, “The dark adaptation of retinal fields of different size and location,” J. Gen. Physiol. 19, 321–337 (1935).

1894 (1)

A. König, “Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen,” Sitzungsber. K. Preuss. Akad. Wiss. 30, 577–598 (1894).

1885 (1)

E. Hering, “Ueber individuelle Verschiedenbeiten des Farbensinnes,” Lotos 6, 142–198 (1885).

Adachi-Usami, E.

E. Adachi-Usami, “Scotopic retinal sensitivity in man as determined with visually evoked cortical potentials,” Jpn. J. Physiol. 28, 171–180 (1978).
[CrossRef] [PubMed]

Aguilar, M.

M. Aguilar and W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

Alpern, M.

M. Alpern and E. N. Pugh, “The density and photosensitivity of human rhodopsin in the living retina,” J. Physiol. (London) 237, 341–370 (1974).

M. Alpern, S. Thompson, and M. S. Lee, “Spectral transmittance of visible light by the living human eye,” J. Opt. Soc. Am. 55, 723–727 (1965).
[CrossRef] [PubMed]

Arden, G. B.

G. B. Arden and R. A. Weale, “Nervous mechanisms and dark-adaptation,” J. Physiol. (London) 125, 417–426 (1954).

Armaington, J. C.

J. C. Armaington, “Spectral sensitivity of simultaneous electroretinograms and occipital responses,” Clin. Electroretinography: Vision Res. Suppl. (1966), pp. 225–233.

Armington, J. C.

Beck, E. C.

R. E. Dustman and E. C. Beck, “Visually evoked potentials: amplitude changes with age,” Science 151, 1013–1015 (1966).
[CrossRef] [PubMed]

Berry, R. N.

Boettner, E. A.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthal. 1, 776–783 (1962).

Boynton, R. M.

Brown, P. K.

G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–226 (1958).
[CrossRef] [PubMed]

Burch, J. M.

W. S. Stiles and J. M. Burch, “N.P.L, colour-matching investigation: final report (1958),” Opt. Acta 6, 1–26 (1959).

Bush, W. R.

Collignon, J.

R. Weekers, Y. Delmarcelle, J. Luyckx-Bacus, and J. Collignon, “Morphological changes of the lens with age and cataract,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdarm, 1973), pp. 25–40.

Cooper, G. F.

G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and the other primates,” J. Physiol. (London) 203, 411–417 (1969).

Coren, S.

S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measures over an extended age range,” Vision Res. 12, 343–346 (1972).
[CrossRef] [PubMed]

Crawford, B. H.

B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Sect. B 62, 321–334 (1949).
[CrossRef]

Crescitelli, F.

F. Crescitelli and H. J. A. Dartnall, “Human visual purple,” Nature 172, 195–197 (1953).
[CrossRef] [PubMed]

Dalton, J.

J. Dalton, “Extraordinary facts relating to the vision of colours: with observations,” Mem. Proc. Manchester Lit. Philos. Soc. 5, 28–45 (1798).

Dartnall, H. J. A.

H. J. A. Dartnall, “Some recent work on visual pigments,” Brit. Med. Bull. 26, 175–178 (1970).
[PubMed]

F. Crescitelli and H. J. A. Dartnall, “Human visual purple,” Nature 172, 195–197 (1953).
[CrossRef] [PubMed]

H. J. A. Dartnall and C. F. Goodeve, “Scotopic luminosity curve and the absorption spectrum of visual purple,” Nature 139, 409–411 (1937).
[CrossRef]

DeGroot, S. G.

Delmarcelle, Y.

R. Weekers, Y. Delmarcelle, J. Luyckx-Bacus, and J. Collignon, “Morphological changes of the lens with age and cataract,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdarm, 1973), pp. 25–40.

Dobelle, W. H.

W. H. Dobelle, W. B. Marks, and E. F. MacNichol, “Visual pigment density in single primate foveal cones,” Science 166, 1508–1510 (1969).
[CrossRef] [PubMed]

Dustman, R. E.

R. E. Dustman and E. C. Beck, “Visually evoked potentials: amplitude changes with age,” Science 151, 1013–1015 (1966).
[CrossRef] [PubMed]

Enoch, J. M.

Gardiner, J. S.

E. Wolf and J. S. Gardiner, “Studies on the scatter of light in the dioptric media of the eye as a basis of visual glare,” Arch. Ophthalmol. 74, 338–345 (1965).
[CrossRef] [PubMed]

Gebhard, J. W.

Girgus, J. S.

S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measures over an extended age range,” Vision Res. 12, 343–346 (1972).
[CrossRef] [PubMed]

Goodeve, C. F.

H. J. A. Dartnall and C. F. Goodeve, “Scotopic luminosity curve and the absorption spectrum of visual purple,” Nature 139, 409–411 (1937).
[CrossRef]

Griffin, D. R.

Grover, D.

D. Grover and S. Zigman, “Coloration of human lenses by near ultraviolet photo-oxidized tryptophan,” Exp. Eye Res. 13, 70–76 (1972).
[CrossRef] [PubMed]

Haig, C.

S. Hecht, C. Haig, and G. Wald, “The dark adaptation of retinal fields of different size and location,” J. Gen. Physiol. 19, 321–337 (1935).

Hecht, S.

S. Hecht, C. Haig, and G. Wald, “The dark adaptation of retinal fields of different size and location,” J. Gen. Physiol. 19, 321–337 (1935).

Hering, E.

E. Hering, “Ueber individuelle Verschiedenbeiten des Farbensinnes,” Lotos 6, 142–198 (1885).

Hubbard, R.

Kadlecovà, V.

V. Kadlecovà, M. Peleška, and A. Vaško, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef] [PubMed]

Kojima, M.

M. Kojima and E. Zrenner, “Local and spatial distribution of photopic and scotopic responses in the visual field as reflected in the visually evoked cortical potential (VECP),” Doc. Ophthalmolog. 13, 31–40 (1977).

König, A.

A. König, “Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen,” Sitzungsber. K. Preuss. Akad. Wiss. 30, 577–598 (1894).

Lee, M. S.

LeGrand, Y.

Y. LeGrand, Light, Colour and Vision (Wiley, New York, 1957), p. 363.

Ludvigh, E.

E. Ludvigh and E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).
[CrossRef]

Luyckx-Bacus, J.

R. Weekers, Y. Delmarcelle, J. Luyckx-Bacus, and J. Collignon, “Morphological changes of the lens with age and cataract,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdarm, 1973), pp. 25–40.

MacNichol, E. F.

W. H. Dobelle, W. B. Marks, and E. F. MacNichol, “Visual pigment density in single primate foveal cones,” Science 166, 1508–1510 (1969).
[CrossRef] [PubMed]

Marks, W. B.

W. H. Dobelle, W. B. Marks, and E. F. MacNichol, “Visual pigment density in single primate foveal cones,” Science 166, 1508–1510 (1969).
[CrossRef] [PubMed]

McCarthy, E. F.

E. Ludvigh and E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).
[CrossRef]

Mellerio, J.

J. Mellerio, “Light absorption and scatter in the human lens,” Vision Res. 11, 129–141 (1971).
[CrossRef] [PubMed]

Norren, D. V.

D. V. Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

P. Padmos and D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthamol. 11, 783–788 (1972).

Padmos, P.

P. Padmos and D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthamol. 11, 783–788 (1972).

Peleška, M.

V. Kadlecovà, M. Peleška, and A. Vaško, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef] [PubMed]

Pokorny, J.

V. Smith and J. Pokorny, Eye Research Laboratories, University of Chicago, Chicago, Illinois 60637 (personal communication). Also see V. Smith and J. Pokorny, “Prediction of color-matching functions,” J. Opt. Soc. Am. 67, 1375 (1977).

Powers, M. K.

M. K. Powers, M. Schneck, and D. Y. Teller, “Spectral sensitivity of human infants at absolute visual threshold,” Vision Res. 21, 1005–1016 (1981).
[CrossRef] [PubMed]

Pugh, E. N.

M. Alpern and E. N. Pugh, “The density and photosensitivity of human rhodopsin in the living retina,” J. Physiol. (London) 237, 341–370 (1974).

Riggs, L. A.

Robson, J. G.

G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and the other primates,” J. Physiol. (London) 203, 411–417 (1969).

Ruddock, K. H.

K. H. Ruddock, “Light transmission through the ocular media and macular pigment and its significance for psychophysical investigation,” in Handbook of Sensory Physiology, Vol. VII/4, Visual Psychophysics, D. Jameson and L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972).
[CrossRef]

Rulshton, W. A. H.

W. A. H. Rulshton, “The rhodopsin density in the human rods,” J. Physiol. (London) 134, 30–46 (1956).

Said, F. S.

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Schneck, M.

M. K. Powers, M. Schneck, and D. Y. Teller, “Spectral sensitivity of human infants at absolute visual threshold,” Vision Res. 21, 1005–1016 (1981).
[CrossRef] [PubMed]

Smith, V.

V. Smith and J. Pokorny, Eye Research Laboratories, University of Chicago, Chicago, Illinois 60637 (personal communication). Also see V. Smith and J. Pokorny, “Prediction of color-matching functions,” J. Opt. Soc. Am. 67, 1375 (1977).

Stiles, W. S.

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” Anales R. Soc. Esp. Quim. Fis., Ser. A 57, 149–175 (1961).

W. S. Stiles and J. M. Burch, “N.P.L, colour-matching investigation: final report (1958),” Opt. Acta 6, 1–26 (1959).

M. Aguilar and W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

W. S. Stiles, “The physical interpretation of the spectral sensitivity curve of the eye,” Trans. Opt. Con. Worshipful Comp. Spectacle Makers, 97–107 (Spectacle Makers’ Company, London, 1948).

Tan, K. E. W. P.

K. E. W. P. Tan, “Vision in the ultraviolet,” Doctoral Thesis (University of Utrecht, Utrecht, The Netherlands, 1971).

Teller, D. Y.

M. K. Powers, M. Schneck, and D. Y. Teller, “Spectral sensitivity of human infants at absolute visual threshold,” Vision Res. 21, 1005–1016 (1981).
[CrossRef] [PubMed]

Thompson, S.

Vaško, A.

V. Kadlecovà, M. Peleška, and A. Vaško, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef] [PubMed]

Vos, J. J.

D. V. Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

Wald, G.

G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–226 (1958).
[CrossRef] [PubMed]

D. R. Griffin, R. Hubbard, and G. Wald, “The sensitivity of the human eye to infra-red radiation,” J. Opt. Soc. Am. 37, 546–554 (1947).
[CrossRef] [PubMed]

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

S. Hecht, C. Haig, and G. Wald, “The dark adaptation of retinal fields of different size and location,” J. Gen. Physiol. 19, 321–337 (1935).

Wayner, M.

Weale, R. A.

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

G. B. Arden and R. A. Weale, “Nervous mechanisms and dark-adaptation,” J. Physiol. (London) 125, 417–426 (1954).

R. A. Weale, “Light absorption by the lens of the human eye,” Opt. Acta 1, 107–110 (1954).
[CrossRef]

R. A. Weale, “The effects of the ageing lens on vision,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdam, 1973), pp. 5–20.

Weekers, R.

R. Weekers, Y. Delmarcelle, J. Luyckx-Bacus, and J. Collignon, “Morphological changes of the lens with age and cataract,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdarm, 1973), pp. 25–40.

Werner, J. S.

J. S. Werner and B. R. Wooten, “Human infant color vision and color perception,” Infant Behav. Dev. 2, 241–274 (1979).
[CrossRef]

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

Wolf, E.

E. Wolf and J. S. Gardiner, “Studies on the scatter of light in the dioptric media of the eye as a basis of visual glare,” Arch. Ophthalmol. 74, 338–345 (1965).
[CrossRef] [PubMed]

E. Wolf and M. J. Zigler, “Location of the break in the dark adaptation curve in relation to pre-exposure brightness and pre-exposure time,” J. Opt. Soc. Am. 44, 875–879 (1954).
[CrossRef] [PubMed]

Wolter, J. R.

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthal. 1, 776–783 (1962).

Wooten, B. R.

J. S. Werner and B. R. Wooten, “Human infant color vision and color perception,” Infant Behav. Dev. 2, 241–274 (1979).
[CrossRef]

B. R. Wooten, “Photopic and scotopic contributions to the human visually evoked cortical potential,” Vision Res. 12, 1647–1660 (1972).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

Zigler, M. J.

Zigman, S.

D. Grover and S. Zigman, “Coloration of human lenses by near ultraviolet photo-oxidized tryptophan,” Exp. Eye Res. 13, 70–76 (1972).
[CrossRef] [PubMed]

Zrenner, E.

M. Kojima and E. Zrenner, “Local and spatial distribution of photopic and scotopic responses in the visual field as reflected in the visually evoked cortical potential (VECP),” Doc. Ophthalmolog. 13, 31–40 (1977).

Anales R. Soc. Esp. Quim. Fis., Ser. A (1)

W. S. Stiles, “Adaptation, chromatic adaptation, colour transformation,” Anales R. Soc. Esp. Quim. Fis., Ser. A 57, 149–175 (1961).

Arch. Ophthalmol. (2)

E. Ludvigh and E. F. McCarthy, “Absorption of visible light by the refractive media of the human eye,” Arch. Ophthalmol. 20, 37–51 (1938).
[CrossRef]

E. Wolf and J. S. Gardiner, “Studies on the scatter of light in the dioptric media of the eye as a basis of visual glare,” Arch. Ophthalmol. 74, 338–345 (1965).
[CrossRef] [PubMed]

Brit. Med. Bull. (1)

H. J. A. Dartnall, “Some recent work on visual pigments,” Brit. Med. Bull. 26, 175–178 (1970).
[PubMed]

Clin. Electroretinography: Vision Res. Suppl. (1)

J. C. Armaington, “Spectral sensitivity of simultaneous electroretinograms and occipital responses,” Clin. Electroretinography: Vision Res. Suppl. (1966), pp. 225–233.

Doc. Ophthalmolog. (1)

M. Kojima and E. Zrenner, “Local and spatial distribution of photopic and scotopic responses in the visual field as reflected in the visually evoked cortical potential (VECP),” Doc. Ophthalmolog. 13, 31–40 (1977).

Exp. Eye Res. (1)

D. Grover and S. Zigman, “Coloration of human lenses by near ultraviolet photo-oxidized tryptophan,” Exp. Eye Res. 13, 70–76 (1972).
[CrossRef] [PubMed]

Gerontologia (1)

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[CrossRef] [PubMed]

Infant Behav. Dev. (1)

J. S. Werner and B. R. Wooten, “Human infant color vision and color perception,” Infant Behav. Dev. 2, 241–274 (1979).
[CrossRef]

Invest. Ophthal. (1)

E. A. Boettner and J. R. Wolter, “Transmission of the ocular media,” Invest. Ophthal. 1, 776–783 (1962).

Invest. Ophthamol. (1)

P. Padmos and D. V. Norren, “The vector voltmeter as a tool to measure electroretinogram spectral sensitivity and dark adaptation,” Invest. Ophthamol. 11, 783–788 (1972).

J. Gen. Physiol. (1)

S. Hecht, C. Haig, and G. Wald, “The dark adaptation of retinal fields of different size and location,” J. Gen. Physiol. 19, 321–337 (1935).

J. Opt. Soc. Am. (8)

J. Physiol. (London) (4)

W. A. H. Rulshton, “The rhodopsin density in the human rods,” J. Physiol. (London) 134, 30–46 (1956).

M. Alpern and E. N. Pugh, “The density and photosensitivity of human rhodopsin in the living retina,” J. Physiol. (London) 237, 341–370 (1974).

G. F. Cooper and J. G. Robson, “The yellow colour of the lens of man and the other primates,” J. Physiol. (London) 203, 411–417 (1969).

G. B. Arden and R. A. Weale, “Nervous mechanisms and dark-adaptation,” J. Physiol. (London) 125, 417–426 (1954).

Jpn. J. Physiol. (1)

E. Adachi-Usami, “Scotopic retinal sensitivity in man as determined with visually evoked cortical potentials,” Jpn. J. Physiol. 28, 171–180 (1978).
[CrossRef] [PubMed]

Lotos (1)

E. Hering, “Ueber individuelle Verschiedenbeiten des Farbensinnes,” Lotos 6, 142–198 (1885).

Mem. Proc. Manchester Lit. Philos. Soc. (1)

J. Dalton, “Extraordinary facts relating to the vision of colours: with observations,” Mem. Proc. Manchester Lit. Philos. Soc. 5, 28–45 (1798).

N.P.L, colour-matching investigation: final report (1)

W. S. Stiles and J. M. Burch, “N.P.L, colour-matching investigation: final report (1958),” Opt. Acta 6, 1–26 (1959).

Nature (3)

V. Kadlecovà, M. Peleška, and A. Vaško, “Dependence on age of the diameter of the pupil in the dark,” Nature 182, 1520–1521 (1958).
[CrossRef] [PubMed]

H. J. A. Dartnall and C. F. Goodeve, “Scotopic luminosity curve and the absorption spectrum of visual purple,” Nature 139, 409–411 (1937).
[CrossRef]

F. Crescitelli and H. J. A. Dartnall, “Human visual purple,” Nature 172, 195–197 (1953).
[CrossRef] [PubMed]

Opt. Acta (2)

M. Aguilar and W. S. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Opt. Acta 1, 59–65 (1954).
[CrossRef]

R. A. Weale, “Light absorption by the lens of the human eye,” Opt. Acta 1, 107–110 (1954).
[CrossRef]

Proc. Phys. Soc. London Sect. B (1)

B. H. Crawford, “The scotopic visibility function,” Proc. Phys. Soc. London Sect. B 62, 321–334 (1949).
[CrossRef]

Science (4)

G. Wald and P. K. Brown, “Human rhodopsin,” Science 127, 222–226 (1958).
[CrossRef] [PubMed]

G. Wald, “Human vision and the spectrum,” Science 101, 653–658 (1945).
[CrossRef] [PubMed]

R. E. Dustman and E. C. Beck, “Visually evoked potentials: amplitude changes with age,” Science 151, 1013–1015 (1966).
[CrossRef] [PubMed]

W. H. Dobelle, W. B. Marks, and E. F. MacNichol, “Visual pigment density in single primate foveal cones,” Science 166, 1508–1510 (1969).
[CrossRef] [PubMed]

Sitzungsber. K. Preuss. Akad. Wiss. (1)

A. König, “Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen,” Sitzungsber. K. Preuss. Akad. Wiss. 30, 577–598 (1894).

Vision Res. (6)

S. Coren and J. S. Girgus, “Density of human lens pigmentation: in vivo measures over an extended age range,” Vision Res. 12, 343–346 (1972).
[CrossRef] [PubMed]

D. V. Norren and J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[CrossRef] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[CrossRef] [PubMed]

B. R. Wooten, “Photopic and scotopic contributions to the human visually evoked cortical potential,” Vision Res. 12, 1647–1660 (1972).
[CrossRef] [PubMed]

J. Mellerio, “Light absorption and scatter in the human lens,” Vision Res. 11, 129–141 (1971).
[CrossRef] [PubMed]

M. K. Powers, M. Schneck, and D. Y. Teller, “Spectral sensitivity of human infants at absolute visual threshold,” Vision Res. 21, 1005–1016 (1981).
[CrossRef] [PubMed]

Other (11)

R. A. Weale, “The effects of the ageing lens on vision,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdam, 1973), pp. 5–20.

R. Weekers, Y. Delmarcelle, J. Luyckx-Bacus, and J. Collignon, “Morphological changes of the lens with age and cataract,” in The Human Lens—in Relation to Cataract, A. Pirie, ed. (Elsevier, Amsterdarm, 1973), pp. 25–40.

The manner in which the data from previous studies were obtained and transformed for presentation in Fig. 12 is deserving of comment. The general procedure was to divide all axial measurements by 1.16 to compare them with measures made for the whole pupil. Also, when density estimates were not reported for 400 nm, the standard template of Norren and Vos was used to interpolate optical density at 400 nm. Special considerations pertaining to each study are as follows: (1) Only two of the three observers of Alpern et al.52 are presented because the density of the third observer exceeded the axis of ordinates in the figure. (2) The data of Boettner and Wolter7 are based only on the lens. (3) The data of Grover and Zigman53 were based on their smooth function (Fig. 1, p. 71) at age intervals of 10 years. (4) Unfortunately, it was not possible to locate an archival report from Said (1959). The values were obtained from Fig. 2 (p. 9) of a chapter by Weale.54 (5) The lens-density estimates of Said and Weale9 are generally considered to be too low at short wavelengths but reliable above 460 nm.4 Therefore, the density at 460 nm was read from Fig. 2 of Weale54 and the density at 400 nm was interpolated from the standard curve. (6) Stiles and Burch41 did not measure ocular-media absorption directly, but rather, it was calculated from color-matching functions. The position to which these data were scaled was taken from Weale.54 (7) Density at 400 nm was read directly from Tan’s 10 Fig. 3 (p. 87). These data represent the averages of five age groups. The age plotted in Fig. 12 was the median for each group. (8) The standard observer of Norren and Vos4 was derived primarily from density estimates for observers between 20 and 30 years of age. The age at which the standard observer is plotted in Fig. 12 is 25 years. (9) Weale’s55 data were obtained from two excised lenses.

Y. LeGrand, Light, Colour and Vision (Wiley, New York, 1957), p. 363.

W. S. Stiles, “The physical interpretation of the spectral sensitivity curve of the eye,” Trans. Opt. Con. Worshipful Comp. Spectacle Makers, 97–107 (Spectacle Makers’ Company, London, 1948).

The slope of the RVR function at 441 nm is shallower for both observers in Fig. 3. This peculiarity was not seen for other observers and other responses for these observers.

The optical density of observer LR was interpolated at 400 nm on the basis of the standard curve of Norren and Vos (Ref. 4).

V. Smith and J. Pokorny, Eye Research Laboratories, University of Chicago, Chicago, Illinois 60637 (personal communication). Also see V. Smith and J. Pokorny, “Prediction of color-matching functions,” J. Opt. Soc. Am. 67, 1375 (1977).

G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1967).

K. H. Ruddock, “Light transmission through the ocular media and macular pigment and its significance for psychophysical investigation,” in Handbook of Sensory Physiology, Vol. VII/4, Visual Psychophysics, D. Jameson and L. M. Hurvich, eds. (Springer-Verlag, Berlin, 1972).
[CrossRef]

K. E. W. P. Tan, “Vision in the ultraviolet,” Doctoral Thesis (University of Utrecht, Utrecht, The Netherlands, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram of the apparatus. Light paths shown by solid lines are on the horizontal plane; light paths shown by broken lines are on the vertical plane. Optical system abbreviations: S, light source; WB, water bath; A, aperture; W, wedge; FB, filter box; SM, sectored mirror; FS, field stop; BS, beam splitter. Recording system abbreviations: CRO, cathode-ray oscilloscope; CAT, computer of average transients.

Fig. 2
Fig. 2

Log relative sensitivity [log(1/criterion)λ] of subjects CL (4.5 months) and CM (5 months) expressed in terms of the relative number of quanta incident upon the cornea at the VECP criterion voltage. The smooth curves were fitted to the data by eye.

Fig. 3
Fig. 3

VECP amplitude as a function of log relative radiance. Records are shown for an infant and an adult observer at wavelength intervals of approximately 20 nm. The hash marks on the axes of the abscissas indicate steps of 0.5 optical density.

Fig. 4
Fig. 4

Log relative sensitivity [log(1/criterion)λ] of subjects BW (36 years) and LR (66 years) expressed in terms of the relative number of quanta incident upon the cornea at the VECP criterion voltage (filled circles). Other VECP and psychophysical measurements are plotted for BW as indicated by the figure key. The smooth curves were fitted to the VECP data by eye.

Fig. 5
Fig. 5

Log relative sensitivity [log(1/criterion)λ] of subject RS expressed in terms of the relative number of quanta incident upon the cornea at three different VECP criterion voltages. The functions have been arbitrarily displaced by 1 log unit, and the data points were translated along the axis of ordinates for an optimal fit. The main branch of the curve that is fitted to each set of data is the CIE Vλ curve on a quantal basis, whereas the secondary branch (dashed curve) is based upon the empirical data above 600 nm.

Fig. 6
Fig. 6

VECP amplitude as a function of neutral-density wedge position (or as log relative radiance, 410 nm). Top panel, centrally fixated stimuli progressively reduced in size; middle panel, centrally fixated stimuli, with and without the central 14°; bottom panel, monochromatic stimuli with and without a superposed, steady, white background (5 scotopic trolands).

Fig. 7
Fig. 7

Log relative sensitivity [log(1/criterion)λ] of subjects MB (2 years) and SL (2.5 years) expressed in terms of the relative number of quanta incident upon the cornea at the VECP criterion voltage. The smooth curves were fitted to the data by eye.

Fig. 8
Fig. 8

Log relative sensitivity [log(1/criterion)λ] of subjects RS (20 years) and AW (26 years) expressed in terms of the relative number of quanta incident upon the cornea at the VECP criterion voltage (circles) and at psychophysical threshold (squares). The smooth curves were fitted to the VECP data by eye.

Fig. 9
Fig. 9

Scotopic spectral-sensitivity functions (middle and bottom curves of the top panel) compared with the human rhodopsin log absorption spectrum (top curve). The difference between the rhodopsin curve and the sensitivity curves, indicated by horizontal lines for the child and by vertical lines for the adult, is plotted in the bottom panel.

Fig. 10
Fig. 10

The data points indicate the density as a function of wavelength of each observer’s ocular media. The smooth curves on the left side of the two panels are derived from the density spectrum of the standard observer of Norren and Vos; the smooth curves on the right side of the panels are derived from the two-component ocular media spectrum of Smith and Pokorny. The parameters of the fits are presented in Table 1.

Fig. 11
Fig. 11

Optic-media density at 400 nm plotted as a function of age (years). The solid line represents the best linear fit to the data points.

Fig. 12
Fig. 12

Optic-media density at 400 nm plotted as a function of the decadic logarithm of age (years). The smooth function represents the best linear fit to the data points of this investigation (circles). Data points from other studies are presented according to the figure key. The methods of data reduction are explained in Ref. 51.

Tables (1)

Tables Icon

Table 1 Ocular-Media Fits