Abstract

The canonical operator theory introduced recently for the description of lossless first-order optics is extended here to first-order systems with loss or gain, elucidating the relation between canonical operator and complex ray methods. The spread functions in the space, frequency, and hybrid domains are derived in terms of the <i>ABCD</i> raytransfer matrix as well as in terms of four other new matrix descriptions of geometrical optics. The fourfold correspondence among these matrices, the Hamilton characteristics, and the spread functions in the space, frequency, and hybrid domains leads to the derivation of four fundamental explicit canonical representations of the transfer operator and to their parameterization in terms of characteristic matrix elements. The relation between adjoint operators and bidirectional propagation is derived within canonical operator theory of first-order optics as well as within a more-general setting for all reciprocal (but not necessarily lossless) optical systems.

© 1982 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription