Abstract

The atomic-iodine hyperfine structure is shown to produce anomalous dispersion effects on its hyperfine laser transition at 1.315 μm whenever reasonable small-signal gains are available (~1% cm). This dispersion effect is linearly dependent on the iodine inversion density. Such an anomalous dispersion effect may produce strong phase-induced mode–media interactions for all the lower-gain iodine hyperfine transitions in any low pressure (<50 Torr) atomic-iodine laser. Fortunately, the highest-gain hyperfine transition, F′ = 3 → F″ = 4, has the smallest amount of additional phase shift (or refractivity) introduced by this anomalous dispersion. All the other transitions experience much larger anomalous dispersion effects. This condition should act as an internal frequency discriminator, forcing the iodine to lase on the highest-gain hyperfine transition.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (83)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription