Abstract

The spectral dispersions of rabbit, rat, pigeon, and human crystalline lens material have been measured with a Pulfrich refractometer. The refractive indices all increase rapidly at the violet end of the spectrum so that the chromatic aberrations of the eyes of these species cannot be derived adequately from Cornu’s formula, as had previously been assumed.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. le Grand, Form and Space Vision (Indiana U. Press, Bloomington, Ind., 1967).
  2. A. Polack, “Le chromatisme de l’oeil,” Bull. Soc. Ophthalmol. Paris9B, 401–560 (1923).
  3. S. Tagawa, “Uber die Dispersion der brechenden Medien des Auges,” Arch. Augenheilkd. 99, 587–610 (1928).
  4. J. Marshall, J. Mellerio, and D. A. Palmer, “A schematic eye for the pigeon,” Vision Res. 13, 2449–2453 (1973).
    [Crossref] [PubMed]
  5. D. A. Palmer and C. A. Whitlock, “An improved monochromator using a single graded interference filter,” J. Phys. E. 11, 996–997 (1978).
    [Crossref]
  6. C. B. Daish, Light (English U. Press, London, 1968).
  7. H. H. Emsley, Visual Optics, 5th ed., Vol. 1 (Hatton, London, 1952).
  8. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [Crossref] [PubMed]

1978 (1)

D. A. Palmer and C. A. Whitlock, “An improved monochromator using a single graded interference filter,” J. Phys. E. 11, 996–997 (1978).
[Crossref]

1973 (1)

J. Marshall, J. Mellerio, and D. A. Palmer, “A schematic eye for the pigeon,” Vision Res. 13, 2449–2453 (1973).
[Crossref] [PubMed]

1957 (1)

1928 (1)

S. Tagawa, “Uber die Dispersion der brechenden Medien des Auges,” Arch. Augenheilkd. 99, 587–610 (1928).

Bedford, R. E.

Daish, C. B.

C. B. Daish, Light (English U. Press, London, 1968).

Emsley, H. H.

H. H. Emsley, Visual Optics, 5th ed., Vol. 1 (Hatton, London, 1952).

le Grand, Y.

Y. le Grand, Form and Space Vision (Indiana U. Press, Bloomington, Ind., 1967).

Marshall, J.

J. Marshall, J. Mellerio, and D. A. Palmer, “A schematic eye for the pigeon,” Vision Res. 13, 2449–2453 (1973).
[Crossref] [PubMed]

Mellerio, J.

J. Marshall, J. Mellerio, and D. A. Palmer, “A schematic eye for the pigeon,” Vision Res. 13, 2449–2453 (1973).
[Crossref] [PubMed]

Palmer, D. A.

D. A. Palmer and C. A. Whitlock, “An improved monochromator using a single graded interference filter,” J. Phys. E. 11, 996–997 (1978).
[Crossref]

J. Marshall, J. Mellerio, and D. A. Palmer, “A schematic eye for the pigeon,” Vision Res. 13, 2449–2453 (1973).
[Crossref] [PubMed]

Polack, A.

A. Polack, “Le chromatisme de l’oeil,” Bull. Soc. Ophthalmol. Paris9B, 401–560 (1923).

Tagawa, S.

S. Tagawa, “Uber die Dispersion der brechenden Medien des Auges,” Arch. Augenheilkd. 99, 587–610 (1928).

Whitlock, C. A.

D. A. Palmer and C. A. Whitlock, “An improved monochromator using a single graded interference filter,” J. Phys. E. 11, 996–997 (1978).
[Crossref]

Wyszecki, G.

Arch. Augenheilkd. (1)

S. Tagawa, “Uber die Dispersion der brechenden Medien des Auges,” Arch. Augenheilkd. 99, 587–610 (1928).

J. Opt. Soc. Am. (1)

J. Phys. E. (1)

D. A. Palmer and C. A. Whitlock, “An improved monochromator using a single graded interference filter,” J. Phys. E. 11, 996–997 (1978).
[Crossref]

Vision Res. (1)

J. Marshall, J. Mellerio, and D. A. Palmer, “A schematic eye for the pigeon,” Vision Res. 13, 2449–2453 (1973).
[Crossref] [PubMed]

Other (4)

Y. le Grand, Form and Space Vision (Indiana U. Press, Bloomington, Ind., 1967).

A. Polack, “Le chromatisme de l’oeil,” Bull. Soc. Ophthalmol. Paris9B, 401–560 (1923).

C. B. Daish, Light (English U. Press, London, 1968).

H. H. Emsley, Visual Optics, 5th ed., Vol. 1 (Hatton, London, 1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Refractive indices n′ as functions of wavelength λ in nanometers for various vertebrate lenses. Circles, rabbit; triangles, rat; squares, pigeon. Open symbols, peripheral material; filled symbols, central material.

Fig. 2
Fig. 2

Refractive indices n′ of human lens as functions of wavelength λ in nanometers. Open circles, peripheral material; filled circles, central material. These are compared with le Grand’s assumption (solid line) and with the measurements for distilled water (triangles), which are plotted against the established curve.

Fig. 3
Fig. 3

Circles, longitudinal chromatic aberration of Gullstrand’s Exact Schematic Eye, calculated from the lens dispersion data in Table 2, with the aqueous and vitreous dispersions assumed to be that of water. Solid line, le Grand’s estimate. The power of the eye in diopters is plotted against the wavelength λ in nanometers and is normalized to zero at 590 nm.

Tables (2)

Tables Icon

Table 1 Averaged V Values, Calculated from the Formula (n590 − 1)/(n486n650), of Various Crystalline Lens Materials, Compared with That of Watera

Tables Icon

Table 2 Refractive Indices of Two Zones of a 70-Year-Old Human Lens as Functions of Wavelength