Abstract

Siegman’s theorem is used to express the heterodyne signal from incoherent backscatter lidar in terms of fields in the target plane. It is then shown directly that, contrary to some previously documented predictions, the mean return from a matched transceiver lidar is, as a consequence of its self-adaptive properties, invariably degraded less by turbulence than is that of a bistatic system; established results for the irradiance statistics of beams propagating in the turbulent atmosphere enable beam centroid and scintillation wander tracking to be distinguished as contributing to this result. A combination of the two systems can give rise to near-field transceiver returns that are greater than returns for free-space propagation of untruncated Gaussian beams. Target-plane expressions for signal variance display the dependence of signal statistics on antenna geometry, and application of these results to return-power estimation is briefly discussed.

© 1981 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems

Aniceto Belmonte and Barry J. Rye
Appl. Opt. 39(15) 2401-2411 (2000)

Coherent power measurement uncertainty resulting from atmospheric turbulence

Aniceto Belmonte
Opt. Express 12(1) 168-175 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription