Abstract

The spectrum of the copperlike ion Sr x was observed with a low-inductance spark in the region 70–630 Å on the 10.7-m grazing-incidence spectrograph at the National Bureau of Standards. From the identification of 30 lines, a system of 23 energy levels of the type 3d10nl was determined. The level system includes the configurations ns (n = 4–7), np (n = 4–6), nd (n = 4–6), nf (n = 4–6), and ng (n = 5). The 4f 2F term is inverted. Also identified were 12 transitions of the type 3d104s–3d94s4p and 3d104p–3d94p2, permitting the determination of several 3d94s4p and 3d94p2 levels. The observed 3d10nl energy levels and parameters are compared with Hartree–Fock calculations. The ionization energy is determined from the 3d10ns and nf series to be 1 430 000 ± 500 cm−1 (177.30 ± 0.06 eV). Data for 3d–4p transitions in Sr ix and Sr xi and 3p–3d transitions in Sr xii are also presented.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Reader and N. Acquista, “4s–4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
    [CrossRef]
  2. U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
    [CrossRef]
  3. J. Reader and N. Acquista, “Spectrum and energy levels of ten-times ionized yttrium (Y xi),” J. Opt. Soc. Am. 69, 1285–1288 (1979).
    [CrossRef]
  4. J. Reader and N. Acquista, “Spectrum and energy levels of eleven-times ionized zirconium (Zr xii),” J. Opt. Soc. Am. 69, 1659–1662 (1979).
    [CrossRef]
  5. J. Reader and N. Acquista, “Spectrum and energy levels of twelve-times ionized niobium (Nb xiii),’”” J. Opt. Soc. Am. 70, 317–321 (1980).
    [CrossRef]
  6. J. Reader, G. Luther, and N. Acquista, “Spectrum and energy levels of thirteen-times ionized molybdenum (Mo xiv),” J. Opt. Soc. Am. 69, 144–149 (1979); “Revised 6p2P1/2level of Mo xiv,”  71, 204 (1981).
    [CrossRef]
  7. L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–163 (1969).
  8. W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
    [CrossRef]
  9. J. E. Hansen and W. Persson, “Spectrum of trebly-ionized strontium (Sr iv),” Phys. Scr. 13, 166–180 (1976).
    [CrossRef]
  10. W. Persson, Lund Institute of Technology, Lund, Sweden, personal communication.
  11. Optimization of the level values was done with the computer program elcalc, which was developed by L. Radziemski, Jr.
  12. K. T. Cheng and Y. -K. Kim, “Energy levels, wavelengths, and transition probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
    [CrossRef]
  13. A. E. Livingston and et al., “Energies and lifetimes of excited states in copperlike Kr viii,” Phys. Rev. A 21, 771–781 (1980).
    [CrossRef]
  14. C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Program for atomic structure calculations,” Argonne National Laboratory rep. no. 7404 (National Technical Information Service, Springfield, Va., 1968).
    [CrossRef]
  15. L. J. Curtis and D. G. Ellis, “A formula for cancellation disappearances of atomic oscillator strengths,” J. Phys. B 11, L543–546 (1978).
    [CrossRef]
  16. L. J. Curtis, “Cancellations in atomic dipole transition moments in the Cu isoelectronic sequence,” J. Opt. Soc. Am. 71, 566–568 (1981).
    [CrossRef]
  17. J. Reader and A. Ryabtsev, “3p63d8–3p53d9 transitions in Sr xiii, Y xiv, Zr xv, Nb xvi, and Mo xvii,” J. Opt. Soc. Am. 71, 231–237 (1981).
    [CrossRef]
  18. P. G. Burkhalter, J. Reader, and R. D. Cowan, “Spectra of Moxiii–xviii from a laser-produced plasma and a low-inductance vacuum spark,” J. Opt. Soc. Am. 70, 912–919 (1980).
    [CrossRef]
  19. J. -F. Wyart, J. Reader, and A. N. Ryabtsev, “3d–4p transitions in the copper-like ions Y xi, Zr xii, Nb xiii, and Mo xiv,” J. Opt. Soc. Am.71 (to be published, June1981).
    [CrossRef]
  20. B. Edlén, “Spectra of highly ionized atoms,” Physica 13, 545–554 (1947).
    [CrossRef]
  21. C. E. Moore, Atomic Energy Levels, Vol. II, National Bureau of Standards circ. no. 467 (U.S. Government Printing Office, Washington, D.C., 1952).

1981 (2)

1980 (3)

1979 (3)

1978 (2)

K. T. Cheng and Y. -K. Kim, “Energy levels, wavelengths, and transition probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[CrossRef]

L. J. Curtis and D. G. Ellis, “A formula for cancellation disappearances of atomic oscillator strengths,” J. Phys. B 11, L543–546 (1978).
[CrossRef]

1977 (1)

J. Reader and N. Acquista, “4s–4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[CrossRef]

1976 (1)

J. E. Hansen and W. Persson, “Spectrum of trebly-ionized strontium (Sr iv),” Phys. Scr. 13, 166–180 (1976).
[CrossRef]

1972 (1)

W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
[CrossRef]

1969 (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–163 (1969).

1967 (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

1963 (1)

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Program for atomic structure calculations,” Argonne National Laboratory rep. no. 7404 (National Technical Information Service, Springfield, Va., 1968).
[CrossRef]

1947 (1)

B. Edlén, “Spectra of highly ionized atoms,” Physica 13, 545–554 (1947).
[CrossRef]

Acquista, N.

Burkhalter, P. G.

Cheng, K. T.

K. T. Cheng and Y. -K. Kim, “Energy levels, wavelengths, and transition probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[CrossRef]

Cohen, L.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Cowan, R. D.

Curtis, L. J.

L. J. Curtis, “Cancellations in atomic dipole transition moments in the Cu isoelectronic sequence,” J. Opt. Soc. Am. 71, 566–568 (1981).
[CrossRef]

L. J. Curtis and D. G. Ellis, “A formula for cancellation disappearances of atomic oscillator strengths,” J. Phys. B 11, L543–546 (1978).
[CrossRef]

Edlén, B.

B. Edlén, “Spectra of highly ionized atoms,” Physica 13, 545–554 (1947).
[CrossRef]

Ekberg, J. O.

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–163 (1969).

Ellis, D. G.

L. J. Curtis and D. G. Ellis, “A formula for cancellation disappearances of atomic oscillator strengths,” J. Phys. B 11, L543–546 (1978).
[CrossRef]

Feldman, U.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Froese, C.

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Program for atomic structure calculations,” Argonne National Laboratory rep. no. 7404 (National Technical Information Service, Springfield, Va., 1968).
[CrossRef]

Hansen, J. E.

J. E. Hansen and W. Persson, “Spectrum of trebly-ionized strontium (Sr iv),” Phys. Scr. 13, 166–180 (1976).
[CrossRef]

Kim, Y. -K.

K. T. Cheng and Y. -K. Kim, “Energy levels, wavelengths, and transition probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[CrossRef]

Livingston, A. E.

A. E. Livingston and et al., “Energies and lifetimes of excited states in copperlike Kr viii,” Phys. Rev. A 21, 771–781 (1980).
[CrossRef]

Luther, G.

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Vol. II, National Bureau of Standards circ. no. 467 (U.S. Government Printing Office, Washington, D.C., 1952).

Persson, W.

J. E. Hansen and W. Persson, “Spectrum of trebly-ionized strontium (Sr iv),” Phys. Scr. 13, 166–180 (1976).
[CrossRef]

W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
[CrossRef]

W. Persson, Lund Institute of Technology, Lund, Sweden, personal communication.

Reader, J.

Ryabtsev, A.

Ryabtsev, A. N.

J. -F. Wyart, J. Reader, and A. N. Ryabtsev, “3d–4p transitions in the copper-like ions Y xi, Zr xii, Nb xiii, and Mo xiv,” J. Opt. Soc. Am.71 (to be published, June1981).
[CrossRef]

Svensson, L. Å.

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–163 (1969).

Swartz, M.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Valind, S.

W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
[CrossRef]

Wyart, J. -F.

J. -F. Wyart, J. Reader, and A. N. Ryabtsev, “3d–4p transitions in the copper-like ions Y xi, Zr xii, Nb xiii, and Mo xiv,” J. Opt. Soc. Am.71 (to be published, June1981).
[CrossRef]

Ark. Fys. (1)

L. Å. Svensson and J. O. Ekberg, “The titanium vacuum-spark spectrum from 50 to 425 Å,” Ark. Fys. 40, 145–163 (1969).

At. Data Nucl. Data Tables (1)

K. T. Cheng and Y. -K. Kim, “Energy levels, wavelengths, and transition probabilities for Cu-like ions,” At. Data Nucl. Data Tables 22, 547–563 (1978).
[CrossRef]

Can. J. Phys. (1)

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Program for atomic structure calculations,” Argonne National Laboratory rep. no. 7404 (National Technical Information Service, Springfield, Va., 1968).
[CrossRef]

J. Opt. Soc. Am. (7)

J. Phys. B (1)

L. J. Curtis and D. G. Ellis, “A formula for cancellation disappearances of atomic oscillator strengths,” J. Phys. B 11, L543–546 (1978).
[CrossRef]

Phys. Rev. A (1)

A. E. Livingston and et al., “Energies and lifetimes of excited states in copperlike Kr viii,” Phys. Rev. A 21, 771–781 (1980).
[CrossRef]

Phys. Rev. Lett. (1)

J. Reader and N. Acquista, “4s–4p resonance transitions in highly charged Cu- and Zn-like ions,” Phys. Rev. Lett. 39, 184–187 (1977).
[CrossRef]

Phys. Scr. (2)

W. Persson and S. Valind, “The spectrum of doubly ionized strontium (Sr iii),” Phys. Scr. 5, 187–200 (1972).
[CrossRef]

J. E. Hansen and W. Persson, “Spectrum of trebly-ionized strontium (Sr iv),” Phys. Scr. 13, 166–180 (1976).
[CrossRef]

Physica (1)

B. Edlén, “Spectra of highly ionized atoms,” Physica 13, 545–554 (1947).
[CrossRef]

Rev. Sci. Instrum. (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[CrossRef]

Other (4)

J. -F. Wyart, J. Reader, and A. N. Ryabtsev, “3d–4p transitions in the copper-like ions Y xi, Zr xii, Nb xiii, and Mo xiv,” J. Opt. Soc. Am.71 (to be published, June1981).
[CrossRef]

W. Persson, Lund Institute of Technology, Lund, Sweden, personal communication.

Optimization of the level values was done with the computer program elcalc, which was developed by L. Radziemski, Jr.

C. E. Moore, Atomic Energy Levels, Vol. II, National Bureau of Standards circ. no. 467 (U.S. Government Printing Office, Washington, D.C., 1952).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Grotrian diagram for the 3d10nl level system of Sr x. Wavelengths are in angstroms. Intensities are indicated in parentheses following the wavelengths.

Fig. 2
Fig. 2

Densitometer tracings of spectra from a low-inductance vacuum spark of Sr in the region of the 3d10–3d94p resonance lines of the Ni-like ion Sr xi. The region shown is 83–92 Å. Upper trace, 4 kV; lower trace, 12 kV. The negative electrode for these spectra was titanium. The 3d104s–3d94s4p transitions of Sr x are indicated with capital letters; 3d104p–3d94p2 transitions of Sr x are indicated with lower-case letters. Identifications for lines of Sr xiii, indicated by black dots, are given in Ref. 17.

Tables (12)

Tables Icon

Table 1 Observed Lines of Sr x

Tables Icon

Table 2 Energy Levels of Sr x

Tables Icon

Table 3 Comparison of Observed Energy Levels of Sr x with the Relativistically Calculated Values (in cm−1) of Cheng and Kim (Ref. 12)

Tables Icon

Table 4 Observed and Calculated nf 2F Fine-Structure Intervals in Sr x (Values in cm−1)

Tables Icon

Table 5 Wavelengths of Selected Sr x Lines as Calculated from Optimized Level Values

Tables Icon

Table 6 Energy Parameters in cm−1 for Sr x

Tables Icon

Table 7 Values for the Ionization Energy of Sr x Determined from Various Series (Adopted Value, 1 430 000 ± 500 cm−1)

Tables Icon

Table 8 3d104s–3d94s4p and 3d104p–3d94p2 Transitions in Sr xa

Tables Icon

Table 9 3d94s4p and 3d94p2 Energy Levels of Sr xa

Tables Icon

Table 10 3d104s2–3d94s24p Transitions of the Zn-like Ion Sr ix

Tables Icon

Table 11 3d10–3d94p Resonance Lines of the Ni-like Ion Sr xi

Tables Icon

Table 12 3p63d9–3p53d10 Transitions of the Co-like Ion Sr xii