Abstract

By injecting single subnanosecond pulses into a latent ring-laser oscillator, it is possible to generate highly reproducible intense trains of short pulses from a solid-state laser. In this way, 12-psec pulses are available from a high-repetition-rate Nd3+:YAG laser, whereas Nd3+:phosphate glass reliably produces pulses of <3-psec duration. Further compression of the Nd3+:YAG laser pulses can be accomplished by the insertion of a passive phase modulator into the cavity, yielding pulses of ≥5-psec duration and >3-cm−1 bandwidth.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. Lin and M. R. Topp, “Low quantum-yield molecular fluorescence. Aromatic hydrocarbons in solution at 300°K,” Chem. Phys. Lett. 48, 251–255 (1977).
    [Crossref]
  2. H. B. Lin and M. R. Topp, “Excited singlet state kinetics on a subnanosecond time-scale,” Chem. Phys. 36, 365–375 (1979).
    [Crossref]
  3. K. J. Choi and M. R. Topp, “Vibrational relaxation in excited electronic states of aromatic hydrocarbons,” Chem. Phys. Lett. 69, 441–446 (1980).
    [Crossref]
  4. L. A. Hallidy and M. R. Topp, “Direct time-resolution of the Stokes fluorescence shift of a polar molecule in a polar solvent,” Chem. Phys. Lett. 48, 40–45 (1977).
    [Crossref]
  5. J. C. Smith, L. A. Hallidy, and M. R. Topp, “The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles,” J. Membr. Biol. (in press)
  6. R. C. Eckardt, C. H. Lee, and J. N. Bradford, “Temporal and spectral development of mode locking in a ring-cavity Nd:glass laser,” Appl. Phys. Lett. 19, 420–423 (1971).
    [Crossref]
  7. J. A. Fleck, “Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B 1, 84–95 (1970).
    [Crossref]
  8. I. V. Tomov, R. Fedosejevs, and M. C. Richardson, “Actively mode-locked and Q-controlled Nd:glass laser,” Rev. Sci. Instrum. 50, 9–16 (1979).
    [Crossref] [PubMed]
  9. D. J. Kuizenga, “Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser,” Opt. Commun. 22, 156–160 (1977).
    [Crossref]
  10. V. S. Letokhov, “Formation of ultrashort pulses of coherent light,” JETP Lett. 7, 25–27 (1968).
  11. E. I. Moses, J. J. Turner, and C. L. Tang, “Mode locking of laser oscillators by injection locking,” Appl. Phys. Lett. 28, 258–260 (1976).
    [Crossref]
  12. G. V. Krivoshchekov and et al., “Excitation of ultrashort light pulses in a ruby ring laser with resonance loss modulation,” Sov. Phys. JETP 37, 1007–1011 (1973).
  13. J. R. Taylor, W. Sibbett, and A. J. Cormier, “Bandwidth-limited picosecond pulses from neodymium-phosphate glass oscillator,” Appl. Phys. Lett. 31, 184 (1977).
    [Crossref]
  14. D. E. Cooper and et al., “Picosecond time scale optical coherence experiments in mixed molecular crystals: pentacene in naphthalene,” Chem. Phys. Lett. 67, 41–47 (1979).
    [Crossref]
  15. A. Seilmeier and et al., “A novel spectroscopy using ultrafast two-pulse excitation of large polyatomic molecules,” Chem. Phys. Lett. 58, 225–229 (1978).
    [Crossref]
  16. K. Ding and et al., “Structured UV-spectrum of naphthalene obtained by ultrafast two-pulse excitation,” Chem. Phys. Lett. 72, 39–42 (1980).
    [Crossref]
  17. J. E. Murray and W. H. Lowdermilk, “The regenerative amplifier: a source for synchronized, variable-duration pulses,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 281–284.
    [Crossref]
  18. E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
    [Crossref]
  19. A. Penzkofer and et al., “Generation of single picosecond and subpicosecond light pulses,” Appl. Phys. Lett. 20, 351–354 (1972).
    [Crossref]
  20. H. Opower and W. Kaiser, “Synchronization of giant pulse lasers,” Phys. Lett. 21, 638–640 (1966).
    [Crossref]
  21. E. Lill, S. Schneider, and F. Dörr, “Active mode-locking of a flashlamp pumped dye laser by loss modulation of saturable absorbers,” Opt. Commun. 22, 107–112 (1977).
    [Crossref]
  22. W. H. Glenn, “Parametric amplification of ultrashort laser pulses,” Appl. Phys. Lett. 11, 333–335 (1968).
    [Crossref]
  23. S. L. Shapiro, “Second harmonic generation in LiNbO3by picosecond pulses,” Appl. Phys. Lett. 13, 19–21 (1968).
    [Crossref]
  24. L. A. Hallidy and M. R. Topp, “Picosecond luminescence detection using type-II phase-matched frequency conversion,” Chem. Phys. Lett. 46, 8–14 (1977).
    [Crossref]
  25. S. Schneider, E. Lill, and F. Dörr, “A novel technique for monitoring transient optical phenomena on a picosecond time scale,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 23–26.
    [Crossref]
  26. J. C. Comly, A. Yariv, and E. M. Garmire, “Stable, chirped, ultrashort pulses in lasers using the optical Kerr effect,” Appl. Phys. Lett. 15, 148–150 (1969).
    [Crossref]
  27. J. Comly and et al., “Observation of mode locking and ultrashort optical pulses induced by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 176–178 (1968).
    [Crossref]
  28. J. P. Laussade and A. Yariv, “Mode-locking and ultrashort laser pulses by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 65–66 (1968).
    [Crossref]
  29. L. Dahlström, “Measurement of ultrashort laser pulses by means of the optical Kerr effect,” Opt. Commun. 3, 399–403 (1971).
    [Crossref]
  30. K. Sala, M. C. Richardson, and M. R. Isenor, “Passive mode-locking of lasers with the optical Kerr effect modulator,” IEEE J. Quantum Electron. QE-13, 915–924 (1977).
    [Crossref]
  31. J. Yao, “Simultaneous active AM plus passive FM with Q-controlling mode-locked high power pulsed laser,” in Picosecond Phenomena II, R. M. Hochstrasser, W. Kaiser, and C. V. Shank, eds., Springer Series in Chemical Physics, Vol. 14 (Springer-Verlag, Berlin, 1980), pp. 54–58.
    [Crossref]
  32. A. J. Duerinckx and et al., “Pulse compression inside an actively AM mode-locked Nd:YAG laser using a liquid Kerr cell,” IEEE J. Quantum Electron. QE-14, 983–992 (1978).
    [Crossref]
  33. K. J. Choi and M. R. Topp, “High-power ring lasers in picosecond transient spectroscopy,” J. Opt. Soc. Am. 70, 607 (1980).
  34. J. E. Murray and D. J. Kuizenga, “Regenerative compression of laser pulses,” Appl. Phys. Lett. 37, 27–30 (1980).
    [Crossref]

1980 (4)

K. J. Choi and M. R. Topp, “Vibrational relaxation in excited electronic states of aromatic hydrocarbons,” Chem. Phys. Lett. 69, 441–446 (1980).
[Crossref]

K. Ding and et al., “Structured UV-spectrum of naphthalene obtained by ultrafast two-pulse excitation,” Chem. Phys. Lett. 72, 39–42 (1980).
[Crossref]

K. J. Choi and M. R. Topp, “High-power ring lasers in picosecond transient spectroscopy,” J. Opt. Soc. Am. 70, 607 (1980).

J. E. Murray and D. J. Kuizenga, “Regenerative compression of laser pulses,” Appl. Phys. Lett. 37, 27–30 (1980).
[Crossref]

1979 (3)

D. E. Cooper and et al., “Picosecond time scale optical coherence experiments in mixed molecular crystals: pentacene in naphthalene,” Chem. Phys. Lett. 67, 41–47 (1979).
[Crossref]

H. B. Lin and M. R. Topp, “Excited singlet state kinetics on a subnanosecond time-scale,” Chem. Phys. 36, 365–375 (1979).
[Crossref]

I. V. Tomov, R. Fedosejevs, and M. C. Richardson, “Actively mode-locked and Q-controlled Nd:glass laser,” Rev. Sci. Instrum. 50, 9–16 (1979).
[Crossref] [PubMed]

1978 (2)

A. Seilmeier and et al., “A novel spectroscopy using ultrafast two-pulse excitation of large polyatomic molecules,” Chem. Phys. Lett. 58, 225–229 (1978).
[Crossref]

A. J. Duerinckx and et al., “Pulse compression inside an actively AM mode-locked Nd:YAG laser using a liquid Kerr cell,” IEEE J. Quantum Electron. QE-14, 983–992 (1978).
[Crossref]

1977 (7)

K. Sala, M. C. Richardson, and M. R. Isenor, “Passive mode-locking of lasers with the optical Kerr effect modulator,” IEEE J. Quantum Electron. QE-13, 915–924 (1977).
[Crossref]

L. A. Hallidy and M. R. Topp, “Picosecond luminescence detection using type-II phase-matched frequency conversion,” Chem. Phys. Lett. 46, 8–14 (1977).
[Crossref]

E. Lill, S. Schneider, and F. Dörr, “Active mode-locking of a flashlamp pumped dye laser by loss modulation of saturable absorbers,” Opt. Commun. 22, 107–112 (1977).
[Crossref]

J. R. Taylor, W. Sibbett, and A. J. Cormier, “Bandwidth-limited picosecond pulses from neodymium-phosphate glass oscillator,” Appl. Phys. Lett. 31, 184 (1977).
[Crossref]

D. J. Kuizenga, “Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser,” Opt. Commun. 22, 156–160 (1977).
[Crossref]

H. B. Lin and M. R. Topp, “Low quantum-yield molecular fluorescence. Aromatic hydrocarbons in solution at 300°K,” Chem. Phys. Lett. 48, 251–255 (1977).
[Crossref]

L. A. Hallidy and M. R. Topp, “Direct time-resolution of the Stokes fluorescence shift of a polar molecule in a polar solvent,” Chem. Phys. Lett. 48, 40–45 (1977).
[Crossref]

1976 (1)

E. I. Moses, J. J. Turner, and C. L. Tang, “Mode locking of laser oscillators by injection locking,” Appl. Phys. Lett. 28, 258–260 (1976).
[Crossref]

1973 (1)

G. V. Krivoshchekov and et al., “Excitation of ultrashort light pulses in a ruby ring laser with resonance loss modulation,” Sov. Phys. JETP 37, 1007–1011 (1973).

1972 (1)

A. Penzkofer and et al., “Generation of single picosecond and subpicosecond light pulses,” Appl. Phys. Lett. 20, 351–354 (1972).
[Crossref]

1971 (3)

E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
[Crossref]

R. C. Eckardt, C. H. Lee, and J. N. Bradford, “Temporal and spectral development of mode locking in a ring-cavity Nd:glass laser,” Appl. Phys. Lett. 19, 420–423 (1971).
[Crossref]

L. Dahlström, “Measurement of ultrashort laser pulses by means of the optical Kerr effect,” Opt. Commun. 3, 399–403 (1971).
[Crossref]

1970 (1)

J. A. Fleck, “Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B 1, 84–95 (1970).
[Crossref]

1969 (1)

J. C. Comly, A. Yariv, and E. M. Garmire, “Stable, chirped, ultrashort pulses in lasers using the optical Kerr effect,” Appl. Phys. Lett. 15, 148–150 (1969).
[Crossref]

1968 (5)

J. Comly and et al., “Observation of mode locking and ultrashort optical pulses induced by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 176–178 (1968).
[Crossref]

J. P. Laussade and A. Yariv, “Mode-locking and ultrashort laser pulses by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 65–66 (1968).
[Crossref]

W. H. Glenn, “Parametric amplification of ultrashort laser pulses,” Appl. Phys. Lett. 11, 333–335 (1968).
[Crossref]

S. L. Shapiro, “Second harmonic generation in LiNbO3by picosecond pulses,” Appl. Phys. Lett. 13, 19–21 (1968).
[Crossref]

V. S. Letokhov, “Formation of ultrashort pulses of coherent light,” JETP Lett. 7, 25–27 (1968).

1966 (1)

H. Opower and W. Kaiser, “Synchronization of giant pulse lasers,” Phys. Lett. 21, 638–640 (1966).
[Crossref]

Bradford, J. N.

R. C. Eckardt, C. H. Lee, and J. N. Bradford, “Temporal and spectral development of mode locking in a ring-cavity Nd:glass laser,” Appl. Phys. Lett. 19, 420–423 (1971).
[Crossref]

Choi, K. J.

K. J. Choi and M. R. Topp, “Vibrational relaxation in excited electronic states of aromatic hydrocarbons,” Chem. Phys. Lett. 69, 441–446 (1980).
[Crossref]

K. J. Choi and M. R. Topp, “High-power ring lasers in picosecond transient spectroscopy,” J. Opt. Soc. Am. 70, 607 (1980).

Comly, J.

J. Comly and et al., “Observation of mode locking and ultrashort optical pulses induced by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 176–178 (1968).
[Crossref]

Comly, J. C.

J. C. Comly, A. Yariv, and E. M. Garmire, “Stable, chirped, ultrashort pulses in lasers using the optical Kerr effect,” Appl. Phys. Lett. 15, 148–150 (1969).
[Crossref]

Cooper, D. E.

D. E. Cooper and et al., “Picosecond time scale optical coherence experiments in mixed molecular crystals: pentacene in naphthalene,” Chem. Phys. Lett. 67, 41–47 (1979).
[Crossref]

Cormier, A. J.

J. R. Taylor, W. Sibbett, and A. J. Cormier, “Bandwidth-limited picosecond pulses from neodymium-phosphate glass oscillator,” Appl. Phys. Lett. 31, 184 (1977).
[Crossref]

Dahlström, L.

L. Dahlström, “Measurement of ultrashort laser pulses by means of the optical Kerr effect,” Opt. Commun. 3, 399–403 (1971).
[Crossref]

Ding, K.

K. Ding and et al., “Structured UV-spectrum of naphthalene obtained by ultrafast two-pulse excitation,” Chem. Phys. Lett. 72, 39–42 (1980).
[Crossref]

Dörr, F.

E. Lill, S. Schneider, and F. Dörr, “Active mode-locking of a flashlamp pumped dye laser by loss modulation of saturable absorbers,” Opt. Commun. 22, 107–112 (1977).
[Crossref]

S. Schneider, E. Lill, and F. Dörr, “A novel technique for monitoring transient optical phenomena on a picosecond time scale,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 23–26.
[Crossref]

Duerinckx, A. J.

A. J. Duerinckx and et al., “Pulse compression inside an actively AM mode-locked Nd:YAG laser using a liquid Kerr cell,” IEEE J. Quantum Electron. QE-14, 983–992 (1978).
[Crossref]

Eckardt, R. C.

R. C. Eckardt, C. H. Lee, and J. N. Bradford, “Temporal and spectral development of mode locking in a ring-cavity Nd:glass laser,” Appl. Phys. Lett. 19, 420–423 (1971).
[Crossref]

Fedosejevs, R.

I. V. Tomov, R. Fedosejevs, and M. C. Richardson, “Actively mode-locked and Q-controlled Nd:glass laser,” Rev. Sci. Instrum. 50, 9–16 (1979).
[Crossref] [PubMed]

Fleck, J. A.

J. A. Fleck, “Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B 1, 84–95 (1970).
[Crossref]

Garmire, E. M.

J. C. Comly, A. Yariv, and E. M. Garmire, “Stable, chirped, ultrashort pulses in lasers using the optical Kerr effect,” Appl. Phys. Lett. 15, 148–150 (1969).
[Crossref]

Glenn, W. H.

W. H. Glenn, “Parametric amplification of ultrashort laser pulses,” Appl. Phys. Lett. 11, 333–335 (1968).
[Crossref]

Hallidy, L. A.

L. A. Hallidy and M. R. Topp, “Picosecond luminescence detection using type-II phase-matched frequency conversion,” Chem. Phys. Lett. 46, 8–14 (1977).
[Crossref]

L. A. Hallidy and M. R. Topp, “Direct time-resolution of the Stokes fluorescence shift of a polar molecule in a polar solvent,” Chem. Phys. Lett. 48, 40–45 (1977).
[Crossref]

J. C. Smith, L. A. Hallidy, and M. R. Topp, “The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles,” J. Membr. Biol. (in press)

Isenor, M. R.

K. Sala, M. C. Richardson, and M. R. Isenor, “Passive mode-locking of lasers with the optical Kerr effect modulator,” IEEE J. Quantum Electron. QE-13, 915–924 (1977).
[Crossref]

Kaiser, W.

H. Opower and W. Kaiser, “Synchronization of giant pulse lasers,” Phys. Lett. 21, 638–640 (1966).
[Crossref]

Krivoshchekov, G. V.

G. V. Krivoshchekov and et al., “Excitation of ultrashort light pulses in a ruby ring laser with resonance loss modulation,” Sov. Phys. JETP 37, 1007–1011 (1973).

Kuizenga, D. J.

J. E. Murray and D. J. Kuizenga, “Regenerative compression of laser pulses,” Appl. Phys. Lett. 37, 27–30 (1980).
[Crossref]

D. J. Kuizenga, “Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser,” Opt. Commun. 22, 156–160 (1977).
[Crossref]

Laussade, J. P.

J. P. Laussade and A. Yariv, “Mode-locking and ultrashort laser pulses by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 65–66 (1968).
[Crossref]

Lee, C. H.

R. C. Eckardt, C. H. Lee, and J. N. Bradford, “Temporal and spectral development of mode locking in a ring-cavity Nd:glass laser,” Appl. Phys. Lett. 19, 420–423 (1971).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “Formation of ultrashort pulses of coherent light,” JETP Lett. 7, 25–27 (1968).

Lill, E.

E. Lill, S. Schneider, and F. Dörr, “Active mode-locking of a flashlamp pumped dye laser by loss modulation of saturable absorbers,” Opt. Commun. 22, 107–112 (1977).
[Crossref]

S. Schneider, E. Lill, and F. Dörr, “A novel technique for monitoring transient optical phenomena on a picosecond time scale,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 23–26.
[Crossref]

Lin, H. B.

H. B. Lin and M. R. Topp, “Excited singlet state kinetics on a subnanosecond time-scale,” Chem. Phys. 36, 365–375 (1979).
[Crossref]

H. B. Lin and M. R. Topp, “Low quantum-yield molecular fluorescence. Aromatic hydrocarbons in solution at 300°K,” Chem. Phys. Lett. 48, 251–255 (1977).
[Crossref]

Lowdermilk, W. H.

J. E. Murray and W. H. Lowdermilk, “The regenerative amplifier: a source for synchronized, variable-duration pulses,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 281–284.
[Crossref]

Moses, E. I.

E. I. Moses, J. J. Turner, and C. L. Tang, “Mode locking of laser oscillators by injection locking,” Appl. Phys. Lett. 28, 258–260 (1976).
[Crossref]

Murray, J. E.

J. E. Murray and D. J. Kuizenga, “Regenerative compression of laser pulses,” Appl. Phys. Lett. 37, 27–30 (1980).
[Crossref]

J. E. Murray and W. H. Lowdermilk, “The regenerative amplifier: a source for synchronized, variable-duration pulses,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 281–284.
[Crossref]

Opower, H.

H. Opower and W. Kaiser, “Synchronization of giant pulse lasers,” Phys. Lett. 21, 638–640 (1966).
[Crossref]

Penzkofer, A.

A. Penzkofer and et al., “Generation of single picosecond and subpicosecond light pulses,” Appl. Phys. Lett. 20, 351–354 (1972).
[Crossref]

Richardson, M. C.

I. V. Tomov, R. Fedosejevs, and M. C. Richardson, “Actively mode-locked and Q-controlled Nd:glass laser,” Rev. Sci. Instrum. 50, 9–16 (1979).
[Crossref] [PubMed]

K. Sala, M. C. Richardson, and M. R. Isenor, “Passive mode-locking of lasers with the optical Kerr effect modulator,” IEEE J. Quantum Electron. QE-13, 915–924 (1977).
[Crossref]

Sala, K.

K. Sala, M. C. Richardson, and M. R. Isenor, “Passive mode-locking of lasers with the optical Kerr effect modulator,” IEEE J. Quantum Electron. QE-13, 915–924 (1977).
[Crossref]

Schneider, S.

E. Lill, S. Schneider, and F. Dörr, “Active mode-locking of a flashlamp pumped dye laser by loss modulation of saturable absorbers,” Opt. Commun. 22, 107–112 (1977).
[Crossref]

S. Schneider, E. Lill, and F. Dörr, “A novel technique for monitoring transient optical phenomena on a picosecond time scale,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 23–26.
[Crossref]

Seilmeier, A.

A. Seilmeier and et al., “A novel spectroscopy using ultrafast two-pulse excitation of large polyatomic molecules,” Chem. Phys. Lett. 58, 225–229 (1978).
[Crossref]

Shapiro, S. L.

S. L. Shapiro, “Second harmonic generation in LiNbO3by picosecond pulses,” Appl. Phys. Lett. 13, 19–21 (1968).
[Crossref]

Sibbett, W.

J. R. Taylor, W. Sibbett, and A. J. Cormier, “Bandwidth-limited picosecond pulses from neodymium-phosphate glass oscillator,” Appl. Phys. Lett. 31, 184 (1977).
[Crossref]

Smith, J. C.

J. C. Smith, L. A. Hallidy, and M. R. Topp, “The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles,” J. Membr. Biol. (in press)

Tang, C. L.

E. I. Moses, J. J. Turner, and C. L. Tang, “Mode locking of laser oscillators by injection locking,” Appl. Phys. Lett. 28, 258–260 (1976).
[Crossref]

Taylor, J. R.

J. R. Taylor, W. Sibbett, and A. J. Cormier, “Bandwidth-limited picosecond pulses from neodymium-phosphate glass oscillator,” Appl. Phys. Lett. 31, 184 (1977).
[Crossref]

Tomov, I. V.

I. V. Tomov, R. Fedosejevs, and M. C. Richardson, “Actively mode-locked and Q-controlled Nd:glass laser,” Rev. Sci. Instrum. 50, 9–16 (1979).
[Crossref] [PubMed]

Topp, M. R.

K. J. Choi and M. R. Topp, “Vibrational relaxation in excited electronic states of aromatic hydrocarbons,” Chem. Phys. Lett. 69, 441–446 (1980).
[Crossref]

K. J. Choi and M. R. Topp, “High-power ring lasers in picosecond transient spectroscopy,” J. Opt. Soc. Am. 70, 607 (1980).

H. B. Lin and M. R. Topp, “Excited singlet state kinetics on a subnanosecond time-scale,” Chem. Phys. 36, 365–375 (1979).
[Crossref]

H. B. Lin and M. R. Topp, “Low quantum-yield molecular fluorescence. Aromatic hydrocarbons in solution at 300°K,” Chem. Phys. Lett. 48, 251–255 (1977).
[Crossref]

L. A. Hallidy and M. R. Topp, “Direct time-resolution of the Stokes fluorescence shift of a polar molecule in a polar solvent,” Chem. Phys. Lett. 48, 40–45 (1977).
[Crossref]

L. A. Hallidy and M. R. Topp, “Picosecond luminescence detection using type-II phase-matched frequency conversion,” Chem. Phys. Lett. 46, 8–14 (1977).
[Crossref]

J. C. Smith, L. A. Hallidy, and M. R. Topp, “The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles,” J. Membr. Biol. (in press)

Treacy, E. B.

E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
[Crossref]

Turner, J. J.

E. I. Moses, J. J. Turner, and C. L. Tang, “Mode locking of laser oscillators by injection locking,” Appl. Phys. Lett. 28, 258–260 (1976).
[Crossref]

Yao, J.

J. Yao, “Simultaneous active AM plus passive FM with Q-controlling mode-locked high power pulsed laser,” in Picosecond Phenomena II, R. M. Hochstrasser, W. Kaiser, and C. V. Shank, eds., Springer Series in Chemical Physics, Vol. 14 (Springer-Verlag, Berlin, 1980), pp. 54–58.
[Crossref]

Yariv, A.

J. C. Comly, A. Yariv, and E. M. Garmire, “Stable, chirped, ultrashort pulses in lasers using the optical Kerr effect,” Appl. Phys. Lett. 15, 148–150 (1969).
[Crossref]

J. P. Laussade and A. Yariv, “Mode-locking and ultrashort laser pulses by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 65–66 (1968).
[Crossref]

Appl. Phys. Lett. (10)

R. C. Eckardt, C. H. Lee, and J. N. Bradford, “Temporal and spectral development of mode locking in a ring-cavity Nd:glass laser,” Appl. Phys. Lett. 19, 420–423 (1971).
[Crossref]

J. R. Taylor, W. Sibbett, and A. J. Cormier, “Bandwidth-limited picosecond pulses from neodymium-phosphate glass oscillator,” Appl. Phys. Lett. 31, 184 (1977).
[Crossref]

E. I. Moses, J. J. Turner, and C. L. Tang, “Mode locking of laser oscillators by injection locking,” Appl. Phys. Lett. 28, 258–260 (1976).
[Crossref]

W. H. Glenn, “Parametric amplification of ultrashort laser pulses,” Appl. Phys. Lett. 11, 333–335 (1968).
[Crossref]

S. L. Shapiro, “Second harmonic generation in LiNbO3by picosecond pulses,” Appl. Phys. Lett. 13, 19–21 (1968).
[Crossref]

J. C. Comly, A. Yariv, and E. M. Garmire, “Stable, chirped, ultrashort pulses in lasers using the optical Kerr effect,” Appl. Phys. Lett. 15, 148–150 (1969).
[Crossref]

J. Comly and et al., “Observation of mode locking and ultrashort optical pulses induced by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 176–178 (1968).
[Crossref]

J. P. Laussade and A. Yariv, “Mode-locking and ultrashort laser pulses by anisotropic molecular liquids,” Appl. Phys. Lett. 13, 65–66 (1968).
[Crossref]

A. Penzkofer and et al., “Generation of single picosecond and subpicosecond light pulses,” Appl. Phys. Lett. 20, 351–354 (1972).
[Crossref]

J. E. Murray and D. J. Kuizenga, “Regenerative compression of laser pulses,” Appl. Phys. Lett. 37, 27–30 (1980).
[Crossref]

Chem. Phys. (1)

H. B. Lin and M. R. Topp, “Excited singlet state kinetics on a subnanosecond time-scale,” Chem. Phys. 36, 365–375 (1979).
[Crossref]

Chem. Phys. Lett. (7)

K. J. Choi and M. R. Topp, “Vibrational relaxation in excited electronic states of aromatic hydrocarbons,” Chem. Phys. Lett. 69, 441–446 (1980).
[Crossref]

L. A. Hallidy and M. R. Topp, “Direct time-resolution of the Stokes fluorescence shift of a polar molecule in a polar solvent,” Chem. Phys. Lett. 48, 40–45 (1977).
[Crossref]

H. B. Lin and M. R. Topp, “Low quantum-yield molecular fluorescence. Aromatic hydrocarbons in solution at 300°K,” Chem. Phys. Lett. 48, 251–255 (1977).
[Crossref]

D. E. Cooper and et al., “Picosecond time scale optical coherence experiments in mixed molecular crystals: pentacene in naphthalene,” Chem. Phys. Lett. 67, 41–47 (1979).
[Crossref]

A. Seilmeier and et al., “A novel spectroscopy using ultrafast two-pulse excitation of large polyatomic molecules,” Chem. Phys. Lett. 58, 225–229 (1978).
[Crossref]

K. Ding and et al., “Structured UV-spectrum of naphthalene obtained by ultrafast two-pulse excitation,” Chem. Phys. Lett. 72, 39–42 (1980).
[Crossref]

L. A. Hallidy and M. R. Topp, “Picosecond luminescence detection using type-II phase-matched frequency conversion,” Chem. Phys. Lett. 46, 8–14 (1977).
[Crossref]

IEEE J. Quantum Electron. (2)

A. J. Duerinckx and et al., “Pulse compression inside an actively AM mode-locked Nd:YAG laser using a liquid Kerr cell,” IEEE J. Quantum Electron. QE-14, 983–992 (1978).
[Crossref]

K. Sala, M. C. Richardson, and M. R. Isenor, “Passive mode-locking of lasers with the optical Kerr effect modulator,” IEEE J. Quantum Electron. QE-13, 915–924 (1977).
[Crossref]

J. Appl. Phys. (1)

E. B. Treacy, “Measurement and interpretation of dynamic spectrograms of picosecond light pulses,” J. Appl. Phys. 42, 3848–3858 (1971).
[Crossref]

J. Opt. Soc. Am. (1)

K. J. Choi and M. R. Topp, “High-power ring lasers in picosecond transient spectroscopy,” J. Opt. Soc. Am. 70, 607 (1980).

JETP Lett. (1)

V. S. Letokhov, “Formation of ultrashort pulses of coherent light,” JETP Lett. 7, 25–27 (1968).

Opt. Commun. (3)

D. J. Kuizenga, “Generation of short pulses for laser fusion in an actively mode-locked Nd:YAG laser,” Opt. Commun. 22, 156–160 (1977).
[Crossref]

E. Lill, S. Schneider, and F. Dörr, “Active mode-locking of a flashlamp pumped dye laser by loss modulation of saturable absorbers,” Opt. Commun. 22, 107–112 (1977).
[Crossref]

L. Dahlström, “Measurement of ultrashort laser pulses by means of the optical Kerr effect,” Opt. Commun. 3, 399–403 (1971).
[Crossref]

Phys. Lett. (1)

H. Opower and W. Kaiser, “Synchronization of giant pulse lasers,” Phys. Lett. 21, 638–640 (1966).
[Crossref]

Phys. Rev. B (1)

J. A. Fleck, “Ultrashort-pulse generation by Q-switched lasers,” Phys. Rev. B 1, 84–95 (1970).
[Crossref]

Rev. Sci. Instrum. (1)

I. V. Tomov, R. Fedosejevs, and M. C. Richardson, “Actively mode-locked and Q-controlled Nd:glass laser,” Rev. Sci. Instrum. 50, 9–16 (1979).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

G. V. Krivoshchekov and et al., “Excitation of ultrashort light pulses in a ruby ring laser with resonance loss modulation,” Sov. Phys. JETP 37, 1007–1011 (1973).

Other (4)

J. E. Murray and W. H. Lowdermilk, “The regenerative amplifier: a source for synchronized, variable-duration pulses,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 281–284.
[Crossref]

J. C. Smith, L. A. Hallidy, and M. R. Topp, “The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles,” J. Membr. Biol. (in press)

J. Yao, “Simultaneous active AM plus passive FM with Q-controlling mode-locked high power pulsed laser,” in Picosecond Phenomena II, R. M. Hochstrasser, W. Kaiser, and C. V. Shank, eds., Springer Series in Chemical Physics, Vol. 14 (Springer-Verlag, Berlin, 1980), pp. 54–58.
[Crossref]

S. Schneider, E. Lill, and F. Dörr, “A novel technique for monitoring transient optical phenomena on a picosecond time scale,” in Picosecond Phenomena, E. P. Ippen, C. V. Shank, and S. L. Shapiro, eds., Springer Series in Chemical Physics, Vol. 4 (Springer-Verlag, Berlin, 1978), pp. 23–26.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical arrangement of the main oscillator–regenerative amplifier combination. The cavities were virtually identical, except for their length. The operation of the RA was effectively independent of the size and quality of the selected single pulse from the main oscillator train. The two cavities do not have to be run synchronously—the adjustment of M6 is used for stroboscopic applications. The same Q-switch solution was circulated through two cells in length ratio 2:1 (5:1 for YAG). Aperture I was used to increase the self-oscillation threshold of the RA.

Fig. 2
Fig. 2

Output from the phosphate-glass RA triggered by a phosphate-glass laser pulse. The evolution from a relatively high-gain amplifier to a gain-saturated oscillator is clearly evident. The first pulse is the reflected part of the trigger pulse. The second and subsequent pulses are transmitted through M4. The initial single-pass gain is estimated to be ~5. For gain-saturated pulses, the limit is a gain of ~3. Saturation energy per pulse, ~15 mJ inside the cavity. One major division represents 40 nsec.

Fig. 3
Fig. 3

Time profiles of output pulses from the RA. Upper, correlation between 1.054 μm using BBOT two-photon fluorescence. Second harmonic generated in a 25-mm Type-I phase-matched KDP crystal. The delay indicated is that on the 0.527-μm pulses. Thus the sense of this profile is opposite from the lower two. Middle, correlation between 0.527 and 0.351 μm using naphthalene two-photon fluorescence. Third harmonic generated in a 10-mm Type-II phase-matched KDP crystal. The delay indicated is that on the 0.527-μm pulses in relation to the third harmonic. Lower, same as middle, except that a 25-mm KDP crystal was used.

Fig. 4
Fig. 4

The spectrum of the pulses from the Nd+3:YAG RA. Left, with a liquid phase-modulation cell; right, without a liquid phase-modulation cell. Both spectra are slightly asymmetric. The red tail is more pronounced when the phase modulator is used.

Fig. 5
Fig. 5

The cross-correlation profile between fundamental and second-harmonic pulses from the Nd+3:YAG RA (averaged over the whole pulse train). The average pulse width during the scan was ~5 psec.