Abstract

It is proposed that individuals who are susceptible to glaucomatous damage are those with relatively weak mechanical support at the optic nerve head. A noninvasive method of measuring tissue compliance is described. Preliminary results, obtained in vitro and in vivo, demonstrate the feasibility of the method.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Emery and et al., “The lamina cribrosa in normal and glaucomatous human eyes,” Trans. Am. Acad. Ophthalmol. Otolaryngol. 78, OP290–OP297 (1974).
    [PubMed]
  2. M. E. Yablonski, “Analysis of the mechanical hypothesis of glaucomatous optic disc cupping,” Ann. Ophthalmol. 11, 427 (1979).
    [PubMed]
  3. H. A. Quigley and R. W. Flower, “The mechanism of acute intraocular pressure-induced optic nerve damage,” Invest. Ophthalmol. Visual Sci. 18(Suppl.), 266 (1979).
  4. M. A. Galin, I. Baras, and R. Cuero, “Ophthalmodynamometry using suction,” Arch. Ophthalmol. 81, 494–500 (1969).
    [Crossref]

1979 (2)

M. E. Yablonski, “Analysis of the mechanical hypothesis of glaucomatous optic disc cupping,” Ann. Ophthalmol. 11, 427 (1979).
[PubMed]

H. A. Quigley and R. W. Flower, “The mechanism of acute intraocular pressure-induced optic nerve damage,” Invest. Ophthalmol. Visual Sci. 18(Suppl.), 266 (1979).

1974 (1)

J. M. Emery and et al., “The lamina cribrosa in normal and glaucomatous human eyes,” Trans. Am. Acad. Ophthalmol. Otolaryngol. 78, OP290–OP297 (1974).
[PubMed]

1969 (1)

M. A. Galin, I. Baras, and R. Cuero, “Ophthalmodynamometry using suction,” Arch. Ophthalmol. 81, 494–500 (1969).
[Crossref]

Baras, I.

M. A. Galin, I. Baras, and R. Cuero, “Ophthalmodynamometry using suction,” Arch. Ophthalmol. 81, 494–500 (1969).
[Crossref]

Cuero, R.

M. A. Galin, I. Baras, and R. Cuero, “Ophthalmodynamometry using suction,” Arch. Ophthalmol. 81, 494–500 (1969).
[Crossref]

Emery, J. M.

J. M. Emery and et al., “The lamina cribrosa in normal and glaucomatous human eyes,” Trans. Am. Acad. Ophthalmol. Otolaryngol. 78, OP290–OP297 (1974).
[PubMed]

Flower, R. W.

H. A. Quigley and R. W. Flower, “The mechanism of acute intraocular pressure-induced optic nerve damage,” Invest. Ophthalmol. Visual Sci. 18(Suppl.), 266 (1979).

Galin, M. A.

M. A. Galin, I. Baras, and R. Cuero, “Ophthalmodynamometry using suction,” Arch. Ophthalmol. 81, 494–500 (1969).
[Crossref]

Quigley, H. A.

H. A. Quigley and R. W. Flower, “The mechanism of acute intraocular pressure-induced optic nerve damage,” Invest. Ophthalmol. Visual Sci. 18(Suppl.), 266 (1979).

Yablonski, M. E.

M. E. Yablonski, “Analysis of the mechanical hypothesis of glaucomatous optic disc cupping,” Ann. Ophthalmol. 11, 427 (1979).
[PubMed]

Ann. Ophthalmol. (1)

M. E. Yablonski, “Analysis of the mechanical hypothesis of glaucomatous optic disc cupping,” Ann. Ophthalmol. 11, 427 (1979).
[PubMed]

Arch. Ophthalmol. (1)

M. A. Galin, I. Baras, and R. Cuero, “Ophthalmodynamometry using suction,” Arch. Ophthalmol. 81, 494–500 (1969).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

H. A. Quigley and R. W. Flower, “The mechanism of acute intraocular pressure-induced optic nerve damage,” Invest. Ophthalmol. Visual Sci. 18(Suppl.), 266 (1979).

Trans. Am. Acad. Ophthalmol. Otolaryngol. (1)

J. M. Emery and et al., “The lamina cribrosa in normal and glaucomatous human eyes,” Trans. Am. Acad. Ophthalmol. Otolaryngol. 78, OP290–OP297 (1974).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical and electronic arrangement for the measurement of optic nerve head compliance. (RMS, root mean square).

Fig. 2
Fig. 2

Velocity (V) response of the optic disk and Doppler shift (F) as a function of the time (t) elapsed since the onset of gradually increasing intraocular pressure (P) from 19 to 51 Torr. Also included is the total displacement computed by the integration of the curve.

Fig. 3
Fig. 3

Globe axial elongation per pressure unit as a function of intraocular pressure for postmortem human eyes. A different symbol has been used for each of the five eyes tested. The dotted area represents two standard deviations from the mean curve.

Fig. 4
Fig. 4

Analysis of signal obtained in a living eye. The root mean square of the signal (light line) is plotted against time (t) for three different frequency ranges. The velocity curve (heavy line) is drawn through the maxima of the frequency responses. Its integration yields a total displacement of 120 μm. The bar at the bottom represents the duration of the pressure pulse.