Abstract

Contrast-detection thresholds for various combinations of chromaticity and luminance differences were obtained for spatiotemporal square-wave modulation of a yellow field. The results are expressed in terms of excitation of the Vos–Walraven R, G primaries. For every spatiotemporal frequency the thresholds can be approximated by an ellipse in the red–green plane. Large variations were found in the orientation, magnitude, and eccentricity of the discrimination ellipses. It seems that a simple threshold function appears to be sufficient to describe the experimental data. Although the eye does not perceive hue contrast for high spatial frequencies, its sensitivity is not governed mainly by summation of the red and green channels.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. H. Schade, “On the quality of color-television images and the perception of color detail,” J. Soc. Motion Pict. Telev. Eng. 67, 801–819 (1958).
  2. H. de Lange, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light,” J. Opt. Soc. Am. 48, 771–789 (1958).
  3. F. L. van Nes and et al., “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967).
    [CrossRef] [PubMed]
  4. G. J. C. van der Horst and M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969).
    [CrossRef] [PubMed]
  5. C. R. Cavonius and O. Estévez, “Sensitivity of human color mechanisms to gratings and flicker,” J. Opt. Soc. Am. 65, 966–968 (1975).
    [CrossRef] [PubMed]
  6. D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am,  67, 1081–1091 (1977).
    [CrossRef] [PubMed]
  7. W. R. J. Brown and D. L. MacAdam, “Visual sensitivity to combined chromaticity and luminance differences,” J. Opt. Soc. Am. 39, 808–834 (1949).
    [CrossRef] [PubMed]
  8. C. Noorlander, M. J. G. Heuts, and J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,” J. Opt. Soc. Am. 70, 116–1121 (1980).
    [CrossRef]
  9. P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
    [CrossRef] [PubMed]
  10. O. Estévez, “On the fundamental data-base of normal and dichromatic color vision,” Ph.D. thesis, University of Amsterdam (1979).
  11. G. J. C. van der Horst, Ch. M. M. de Weert, and M. A. Bouman, “Transfer of spatial chromaticity contrast at threshold in the human eye,” J. Opt. Soc. Am. 57, 1260–1266 (1967).
    [CrossRef] [PubMed]
  12. E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt. Soc. Am. 63, 1173–1174 (1973).
    [CrossRef] [PubMed]
  13. D. Regan, “Evoked potentials specific to spatial patterns of luminance and colour,” Vision Res. 13, 2381–2402 (1973).
    [CrossRef] [PubMed]
  14. H. von Helmholtz, “Versuch einer erweiterten Anwendung des Fernersehen Gesetzes im Farbensystem,” Z. Psychol. Physiol. Sinnesorg. 2, 1–30 (1891).
  15. H. von Helmholtz, “Versuch des psychophysische Gesetz auf die Farbenunterschiede trichromatischer Augen anzuwenden,” Z. Psychol. Physiol. Sinnesorg. 3, 1–20 (1892).
  16. E. H. Schrödinger, “Grundlinien einer Theorie der Farbenmetrik im Tagessehen,” Ann. Phy. 63, 397–456; 481–520 (1920).
    [CrossRef]
  17. W. S. Stiles, “A modified Helmholtz line element in brightness-colour space,” Proc. Phys. Soc. Lond. 58, 41–65 (1946).
    [CrossRef]
  18. J. J. Vos and P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision,” Vision Res. 12, 1327–1365 (1972).
    [CrossRef] [PubMed]

1980 (1)

C. Noorlander, M. J. G. Heuts, and J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,” J. Opt. Soc. Am. 70, 116–1121 (1980).
[CrossRef]

1977 (1)

D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am,  67, 1081–1091 (1977).
[CrossRef] [PubMed]

1975 (1)

1974 (1)

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

1973 (2)

D. Regan, “Evoked potentials specific to spatial patterns of luminance and colour,” Vision Res. 13, 2381–2402 (1973).
[CrossRef] [PubMed]

E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt. Soc. Am. 63, 1173–1174 (1973).
[CrossRef] [PubMed]

1972 (1)

J. J. Vos and P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision,” Vision Res. 12, 1327–1365 (1972).
[CrossRef] [PubMed]

1969 (1)

1967 (2)

1958 (2)

O. H. Schade, “On the quality of color-television images and the perception of color detail,” J. Soc. Motion Pict. Telev. Eng. 67, 801–819 (1958).

H. de Lange, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light,” J. Opt. Soc. Am. 48, 771–789 (1958).

1949 (1)

1946 (1)

W. S. Stiles, “A modified Helmholtz line element in brightness-colour space,” Proc. Phys. Soc. Lond. 58, 41–65 (1946).
[CrossRef]

1920 (1)

E. H. Schrödinger, “Grundlinien einer Theorie der Farbenmetrik im Tagessehen,” Ann. Phy. 63, 397–456; 481–520 (1920).
[CrossRef]

1892 (1)

H. von Helmholtz, “Versuch des psychophysische Gesetz auf die Farbenunterschiede trichromatischer Augen anzuwenden,” Z. Psychol. Physiol. Sinnesorg. 3, 1–20 (1892).

1891 (1)

H. von Helmholtz, “Versuch einer erweiterten Anwendung des Fernersehen Gesetzes im Farbensystem,” Z. Psychol. Physiol. Sinnesorg. 2, 1–30 (1891).

Bouman, M. A.

Brown, W. R. J.

Cavonius, C. R.

de Lange, H.

H. de Lange, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light,” J. Opt. Soc. Am. 48, 771–789 (1958).

de Weert, Ch. M. M.

Estévez, O.

C. R. Cavonius and O. Estévez, “Sensitivity of human color mechanisms to gratings and flicker,” J. Opt. Soc. Am. 65, 966–968 (1975).
[CrossRef] [PubMed]

O. Estévez, “On the fundamental data-base of normal and dichromatic color vision,” Ph.D. thesis, University of Amsterdam (1979).

Granger, E. M.

Heurtley, J. C.

Heuts, M. J. G.

C. Noorlander, M. J. G. Heuts, and J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,” J. Opt. Soc. Am. 70, 116–1121 (1980).
[CrossRef]

Kelly, D. H.

D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am,  67, 1081–1091 (1977).
[CrossRef] [PubMed]

Koenderink, J. J.

C. Noorlander, M. J. G. Heuts, and J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,” J. Opt. Soc. Am. 70, 116–1121 (1980).
[CrossRef]

MacAdam, D. L.

Noorlander, C.

C. Noorlander, M. J. G. Heuts, and J. J. Koenderink, “Influence of the target size on the detection threshold for luminance and chromaticity contrast,” J. Opt. Soc. Am. 70, 116–1121 (1980).
[CrossRef]

Regan, D.

D. Regan, “Evoked potentials specific to spatial patterns of luminance and colour,” Vision Res. 13, 2381–2402 (1973).
[CrossRef] [PubMed]

Schade, O. H.

O. H. Schade, “On the quality of color-television images and the perception of color detail,” J. Soc. Motion Pict. Telev. Eng. 67, 801–819 (1958).

Schrödinger, E. H.

E. H. Schrödinger, “Grundlinien einer Theorie der Farbenmetrik im Tagessehen,” Ann. Phy. 63, 397–456; 481–520 (1920).
[CrossRef]

Stiles, W. S.

W. S. Stiles, “A modified Helmholtz line element in brightness-colour space,” Proc. Phys. Soc. Lond. 58, 41–65 (1946).
[CrossRef]

van der Horst, G. J. C.

van Nes, F. L.

van Norren, D.

D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am,  67, 1081–1091 (1977).
[CrossRef] [PubMed]

von Helmholtz, H.

H. von Helmholtz, “Versuch des psychophysische Gesetz auf die Farbenunterschiede trichromatischer Augen anzuwenden,” Z. Psychol. Physiol. Sinnesorg. 3, 1–20 (1892).

H. von Helmholtz, “Versuch einer erweiterten Anwendung des Fernersehen Gesetzes im Farbensystem,” Z. Psychol. Physiol. Sinnesorg. 2, 1–30 (1891).

Vos, J. J.

J. J. Vos and P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision,” Vision Res. 12, 1327–1365 (1972).
[CrossRef] [PubMed]

Walraven, P. L.

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

J. J. Vos and P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision,” Vision Res. 12, 1327–1365 (1972).
[CrossRef] [PubMed]

Ann. Phy. (1)

E. H. Schrödinger, “Grundlinien einer Theorie der Farbenmetrik im Tagessehen,” Ann. Phy. 63, 397–456; 481–520 (1920).
[CrossRef]

J. Opt. Soc. Am (1)

D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am,  67, 1081–1091 (1977).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (8)

J. Soc. Motion Pict. Telev. Eng. (1)

O. H. Schade, “On the quality of color-television images and the perception of color detail,” J. Soc. Motion Pict. Telev. Eng. 67, 801–819 (1958).

Proc. Phys. Soc. Lond. (1)

W. S. Stiles, “A modified Helmholtz line element in brightness-colour space,” Proc. Phys. Soc. Lond. 58, 41–65 (1946).
[CrossRef]

Vision Res. (3)

J. J. Vos and P. L. Walraven, “An analytical description of the line element in the zone-fluctuation model of colour vision,” Vision Res. 12, 1327–1365 (1972).
[CrossRef] [PubMed]

D. Regan, “Evoked potentials specific to spatial patterns of luminance and colour,” Vision Res. 13, 2381–2402 (1973).
[CrossRef] [PubMed]

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

Z. Psychol. Physiol. Sinnesorg. (2)

H. von Helmholtz, “Versuch einer erweiterten Anwendung des Fernersehen Gesetzes im Farbensystem,” Z. Psychol. Physiol. Sinnesorg. 2, 1–30 (1891).

H. von Helmholtz, “Versuch des psychophysische Gesetz auf die Farbenunterschiede trichromatischer Augen anzuwenden,” Z. Psychol. Physiol. Sinnesorg. 3, 1–20 (1892).

Other (1)

O. Estévez, “On the fundamental data-base of normal and dichromatic color vision,” Ph.D. thesis, University of Amsterdam (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Example of a discrimination plot in the (G, R) plane obtained by subject MH for a temporal frequency of 15 Hz. The average stimulation of the cone fundamentals R and G remained the same for every modulation direction: R = 247 td and G = 103 td.

Fig. 2
Fig. 2

Discrimination ellipse obtained by subject CN for a temporal frequency of 1 Hz, drawn in the (dG/G, dR/R) plane. The average excitation of R and G was constant for every modulation direction (R = 247 td, G = 103 td); thus two opposite points refer to the same threshold.

Fig. 3
Fig. 3

Discrimination ellipses of (a) subject CN and (b) subject MH at several spatiotemporal frequencies drawn to the same scale in the (dG/G, dR/R) plane for R = 247 td and G = 103 td. The positions of the origins refer to the temporal frequencies (Ft) designated below the ellipses and to the spatial frequencies (Fs) designated on the left of the ellipses. (It should be noted that the ellipses were obtained by varying the excitation of the red and the green primaries and not by varying Fs or Ft.)

Fig. 4
Fig. 4

Main directions in the (dG/G, dR/R) plane, which are useful for comparing our discrimination ellipses with experimental data of other investigators: a, modulation of the green system; b, luminance modulation; c, modulation of the red system; d, pure-color modulation for MH; e, pure-color modulation for CN.

Fig. 5
Fig. 5

Demonstration that a positive angle of inclination ϕ implies a higher sensitivity to counterphase modulation than to phase modulation of dR/R and dG/G. If, for instance, a threshold is reached for dG/G = x and dR/R = y, then the stimulus dG/G = −x, dR/R = y will be supraliminal.

Fig. 6
Fig. 6

Best-fitting description with line elements for (a) subject CN and (b) subject MH obtained by suitable variation of S1 and S2 of the threshold functions S12(dR + dG)2 + S22(dR/R − dG/G)2 = 1 for CN and S12(dR + 1.8 dG)2 + S22 (dR/R − dG/G)2 = 1 for MH. The plotting method is similar to that of Fig. 3.

Fig. 7
Fig. 7

Discrimination ellipses of (a) subject CN and (b) subject MH at several spatiotemporal frequencies drawn to the same scale in a chromaticity–luminance plane for L = 350 td and λd = 582 nm. The positions of the origins refer to the temporal frequency (Ft) given below the ellipses and to the spatial frequency (Fs) given on the left of the ellipses. (It should be noticed that the ellipses were obtained by varying the chromaticity and luminance and not by varying Fs or Ft.)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R = 0.82 R f + 0.60 G f , G = 0.18 R f + 0.40 G f .
S 1 2 ( d R + p d G ) + S 2 2 ( d R - q d G ) 2 = 1.
S 1 = S 1 ( F s , F t ) , S 2 = S 2 ( F s , F t ) .
S 1 2 ( d R + R G d G ) 2 + S 2 2 ( d R - R G d G ) 2 = 1
( R S 1 ) 2 ( d R R + d G G ) 2 + ( R S 2 ) 2 ( d R R - d G G ) 2 = 1.
S 1 2 ( d R + p d G ) 2 + S 2 2 ( d R R - d G G ) 2 = 1
( d a a ) 2 + ( d b b ) 2 + ( a b d ϕ ) 2 × 10 - 4 .
d L L = d R f + d G f R f + G f = d R + d G R + G             for CN
d L L = d R f + 1.16 d G f R f + 1.16 G f = d R + 1.8 d G R + 1.8 G             for MH .
S 1 2 ( d R + p d G ) 2 + S 2 2 ( d R R - d G G ) 2 = 1