Abstract

Spectra of ionized Y, Zr, Nb, and Mo have been observed in sliding-spark and triggered-spark discharges on 10.7-m normal- and grazing-incidence spectrographs at the National Bureau of Standards in Washington, D.C. From these observations the 4s24p3–4s4p4 transitions in Y vii, Zr viii, Nb ix, and Mo x have been identified. The 4s24p3–4s24p25s transitions in Y vii-Mo x, previously identified by Rahimullah et al. [ Phys. Scr. 14, 221– 223 ( 1976); Phys. Scr. 18, 96– 106 ( 1978)], have been confirmed. In Y vii the 4s24p3–4s24p26s and 4s4p4–4p5 transitions also have been found. The parameters obtained from least-squares fits to the energy levels are compared with Hartree–Fock calculations. Preliminary values of the ionization energies have been determined as 110.02 ± 0.15 eV for Y vii, 133.7 ± 0.5 eV for Zr viii, 159.2 ± 0.7 eV for Nb ix, and 186.4 ± 1.2 eV for Mo x.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “4p–5s transitions in Y vii, viii, Zr viii, ix, Nb ix, x, and Mo x, xi,” Phys. Scr. 14, 221–223 (1976).
    [Crossref]
  2. K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “The 4p–4d transitions of Y vi, vii, viii, Zr vii, viii, ix, Nb viii, ix, x, and Mo ix, x, xi,” Phys. Scr. 18, 96–106 (1978).
    [Crossref]
  3. J. Reader, G. L. Epstein, and J. O. Ekberg, “Spectra of Rb ii, Sr iii, Y iv, Zr v, Nb vi, and Mo vii in the vacuum ultraviolet,” J. Opt. Soc. Am. 62, 273–284 (1972).
    [Crossref]
  4. U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
    [Crossref]
  5. J. Reader and N. Acquista, “4s24p4–4s 4p5 transitions in Zr vii, Nb viii, and Mo ix,” J. Opt. Soc. Am. 66, 896–899 (1976).
    [Crossref]
  6. J. C. Boyce, “The spectra of argon in the extreme ultraviolet,” Phys. Rev. 48, 396–402 (1935).
    [Crossref]
  7. R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms—Hydrogen Through Krypton, Naval Research Laboratory Report 7599 (U.S. Government Printing Office, Washington, D.C., 1973).
  8. C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs for atomic structure calculations,” Argonne National Laboratory Report no. 7404 (National Technical Information Service, Springfield, Va. 22161).
    [Crossref]
  9. R. Zalubas, J. Reader, and C. H. Corliss, “4s24p4–4s 4p5 transitions in five-times-ionized yttrium (Y vi),” J. Opt. Soc. Am. 66, 35–36 (1976).
    [Crossref]
  10. Optimization of the level values was done with the computer program elcalc provided by L. Radziemski, Jr., Los Alamos Scientific Laboratory, Los Alamos, N.M. 87544.
  11. G. L. Epstein and J. Reader, “Spectrum of doubly-ionized yttrium (Y iii),” J. Opt. Soc. Am. 65, 310–314 (1975).
    [Crossref]
  12. J. Reader and N. Acquista, “Spectrum and energy levels of ten-times ionized yttrium (Y xi),” J. Opt. Soc. Am. 69, 1285–1288 (1979).
    [Crossref]

1979 (1)

1978 (1)

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “The 4p–4d transitions of Y vi, vii, viii, Zr vii, viii, ix, Nb viii, ix, x, and Mo ix, x, xi,” Phys. Scr. 18, 96–106 (1978).
[Crossref]

1976 (3)

1975 (1)

1972 (1)

1967 (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

1963 (1)

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs for atomic structure calculations,” Argonne National Laboratory Report no. 7404 (National Technical Information Service, Springfield, Va. 22161).
[Crossref]

1935 (1)

J. C. Boyce, “The spectra of argon in the extreme ultraviolet,” Phys. Rev. 48, 396–402 (1935).
[Crossref]

Acquista, N.

Boyce, J. C.

J. C. Boyce, “The spectra of argon in the extreme ultraviolet,” Phys. Rev. 48, 396–402 (1935).
[Crossref]

Chaghtai, M. S. Z.

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “The 4p–4d transitions of Y vi, vii, viii, Zr vii, viii, ix, Nb viii, ix, x, and Mo ix, x, xi,” Phys. Scr. 18, 96–106 (1978).
[Crossref]

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “4p–5s transitions in Y vii, viii, Zr viii, ix, Nb ix, x, and Mo x, xi,” Phys. Scr. 14, 221–223 (1976).
[Crossref]

Cohen, L.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Corliss, C. H.

Ekberg, J. O.

Epstein, G. L.

Feldman, U.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Froese, C.

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs for atomic structure calculations,” Argonne National Laboratory Report no. 7404 (National Technical Information Service, Springfield, Va. 22161).
[Crossref]

Kelly, R. L.

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms—Hydrogen Through Krypton, Naval Research Laboratory Report 7599 (U.S. Government Printing Office, Washington, D.C., 1973).

Khatoon, S.

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “The 4p–4d transitions of Y vi, vii, viii, Zr vii, viii, ix, Nb viii, ix, x, and Mo ix, x, xi,” Phys. Scr. 18, 96–106 (1978).
[Crossref]

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “4p–5s transitions in Y vii, viii, Zr viii, ix, Nb ix, x, and Mo x, xi,” Phys. Scr. 14, 221–223 (1976).
[Crossref]

Palumbo, L. J.

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms—Hydrogen Through Krypton, Naval Research Laboratory Report 7599 (U.S. Government Printing Office, Washington, D.C., 1973).

Rahimullah, K.

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “The 4p–4d transitions of Y vi, vii, viii, Zr vii, viii, ix, Nb viii, ix, x, and Mo ix, x, xi,” Phys. Scr. 18, 96–106 (1978).
[Crossref]

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “4p–5s transitions in Y vii, viii, Zr viii, ix, Nb ix, x, and Mo x, xi,” Phys. Scr. 14, 221–223 (1976).
[Crossref]

Reader, J.

Swartz, M.

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Zalubas, R.

Can. J. Phys. (1)

C. Froese, “Numerical solution of the Hartree–Fock equations,” Can. J. Phys. 41, 1895–1910 (1963); C. Froese-Fischer and M. Wilson, “Programs for atomic structure calculations,” Argonne National Laboratory Report no. 7404 (National Technical Information Service, Springfield, Va. 22161).
[Crossref]

J. Opt. Soc. Am. (5)

Phys. Rev. (1)

J. C. Boyce, “The spectra of argon in the extreme ultraviolet,” Phys. Rev. 48, 396–402 (1935).
[Crossref]

Phys. Scr. (2)

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “4p–5s transitions in Y vii, viii, Zr viii, ix, Nb ix, x, and Mo x, xi,” Phys. Scr. 14, 221–223 (1976).
[Crossref]

K. Rahimullah, M. S. Z. Chaghtai, and S. Khatoon, “The 4p–4d transitions of Y vi, vii, viii, Zr vii, viii, ix, Nb viii, ix, x, and Mo ix, x, xi,” Phys. Scr. 18, 96–106 (1978).
[Crossref]

Rev. Sci. Instrum. (1)

U. Feldman, M. Swartz, and L. Cohen, “Vacuum ultraviolet source,” Rev. Sci. Instrum. 38, 1372–1373 (1967).
[Crossref]

Other (2)

R. L. Kelly and L. J. Palumbo, Atomic and Ionic Emission Lines Below 2000 Angstroms—Hydrogen Through Krypton, Naval Research Laboratory Report 7599 (U.S. Government Printing Office, Washington, D.C., 1973).

Optimization of the level values was done with the computer program elcalc provided by L. Radziemski, Jr., Los Alamos Scientific Laboratory, Los Alamos, N.M. 87544.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of low configurations and transitions regions for Y vii.

Fig. 2
Fig. 2

Structure of the 4s24p3 configuration of Mo x.

Fig. 3
Fig. 3

Structure of the 4s4p4 configuration of Mo x.

Fig. 4
Fig. 4

Structure of the 4s24p25s configuration of Mo x.

Tables (13)

Tables Icon

Table 1 4s24p3–4s4p4 and 4s24p3–4s24p25s Transitions in Y vii, Zr viii, Nb ix, and Mo xa

Tables Icon

Table 2 4s24p3–4s24p26s and 4s4p4–4p5 Transitions in Y vii

Tables Icon

Table 3 Energy Levels of the 4s24p3, 4s4p4, and 4s24p25s Configurations of Y vii, Zr viii, Nb ix, and Mo x

Tables Icon

Table 4 4p5 and 4s24p26s Levels of Y vii

Tables Icon

Table 5 Energy Parameters (in cm−1) and Mean Errors Δ of Least-Squares Fits for the 4s24p3 Configurations of Y vii, Zr viii, Nb ix, and Mo xa

Tables Icon

Table 6 Energy Parameters (in cm−1) and Mean Errors Δ of Least-Squares Fits for the 4s4p4 Configurations of Y vii, Zr viii, Nb ix, and Mo x

Tables Icon

Table 7 Energy Parameters in (cm−1 and Mean Errors Δ of Least-Squares Fits for the 4s24p25s Configurations of Y vii, Zr viii, Nb ix, and Mo x

Tables Icon

Table 8 Energy Parameters (in cm−1) and Mean Errors Δ of Least-Squares Fits for the 4p5 and 4s24p26s Configurations of Y vii

Tables Icon

Table 9 Percentage Compositions for the 4s24p3 Levels of Y vii, Zr viii, Nb ix, and Mo x

Tables Icon

Table 10 Percentage Compositions for the 4s24p25s Configurations of Y vii, Zr viii, Nb ix, and Mo x

Tables Icon

Table 11 Calculated Energy Level Values (in cm−1) and Percentage Compositions for the 4s24p26s Configuration of Y vii

Tables Icon

Table 12 Differences (in cm−1) between Observed Level Values and Those Calculated with the Fitted Values of the Parameters for the 4s24p3, 4s4p4, and 4s24p25s Configurations of Y vii, Zr viii, Nb ix, and Mo x

Tables Icon

Table 13 Ionization Energies of Y vii, Zr viii, Nb ix, and Mo x