Abstract

Using targets containing compounds of the elements cesium through lutetium, we studied the spectra of laser-produced plasmas in the grazing-incidence region from 40 to 200 Å. The spectra are characterized by strong regions of resonancelike emission extending typically over 9–18 eV. With increasing Z, the spectra show certain systematic variations in character and move monotonically toward shorter wavelengths. From a collisional-radiative plasma model, the ion stages responsible for the emission are identified as viii through xvi. The resonances are attributed to 4d–4f transitions that, because Δn = 0, tend to overlap for different ion stages of the same element.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Carroll and G. O’Sullivan, “Ground state configurations of ionic species Z= 57 through 74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” to be published.
  2. P. K. Carroll, E. T. Kennedy, and G. O’Sullivan, “Laser-produced continua for absorption spectroscopy in the VUV and XUV,” Appl. Opt. 19, 1454–1462 (1980).
    [Crossref] [PubMed]
  3. D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44, 3524–3537 (1973).
    [Crossref]
  4. C. E. Moore, Atomic Energy Levels, Vol. III (National Bureau of Standards, Washington, D.C., 1958);E. Alexander and et al., “Classification of transitions in the EUV spectra of Y ix–xiii, Zr x–xiv, Nb xi–xv and Mo xii–xvi,” J. Opt. Soc. Am. 61, 508–514 (1971); M. Evan-Zohar and B. S. Fraenkel, “A study of the EUV spectra of the fifth period,” J. Phys. B 5, 1596–1613 (1972).
    [Crossref]
  5. S. Fraga, J. Kerwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsever, Amsterdam, New York, 1976).
  6. B. Edlén, “Atomic Spectra,” in Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1964), Chap. XXVII, pp. 80–220.
  7. W. C. Martin, R. Zalubas, and L. Hagen, Atomic Energy Levels, The Rare Earth Elements, NSRDS-NBS 60 (National Bureau of Standards, Washington, D.C., 1978).
  8. J. Sugar, “Resonance lines in the Ag i and Pd i isoelectronic sequences: Cs ix through Sm xvi and Cs x through Nd xv,” J. Opt. Soc. Am. 67, 1518–1521 (1977).
    [Crossref]
  9. R. D. Isler, R. V. Neidigh, and R. D. Cowan, “Tungsten radiation from Tokamak-produced plasmas,” Phys. Lett. 63A, 295–297 (1977).
  10. E. R. Radke, “On the character of the intense 4d–4f resonances in atomic La and Tm,” J. Phys. B 12, L71–75; “Systematic comparison between the 4d spectra of lanthanide atoms and solids,” L77–81 (1979).

1980 (1)

1977 (2)

J. Sugar, “Resonance lines in the Ag i and Pd i isoelectronic sequences: Cs ix through Sm xvi and Cs x through Nd xv,” J. Opt. Soc. Am. 67, 1518–1521 (1977).
[Crossref]

R. D. Isler, R. V. Neidigh, and R. D. Cowan, “Tungsten radiation from Tokamak-produced plasmas,” Phys. Lett. 63A, 295–297 (1977).

1973 (1)

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44, 3524–3537 (1973).
[Crossref]

Carroll, P. K.

P. K. Carroll, E. T. Kennedy, and G. O’Sullivan, “Laser-produced continua for absorption spectroscopy in the VUV and XUV,” Appl. Opt. 19, 1454–1462 (1980).
[Crossref] [PubMed]

P. K. Carroll and G. O’Sullivan, “Ground state configurations of ionic species Z= 57 through 74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” to be published.

Colombant, D.

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44, 3524–3537 (1973).
[Crossref]

Cowan, R. D.

R. D. Isler, R. V. Neidigh, and R. D. Cowan, “Tungsten radiation from Tokamak-produced plasmas,” Phys. Lett. 63A, 295–297 (1977).

Edlén, B.

B. Edlén, “Atomic Spectra,” in Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1964), Chap. XXVII, pp. 80–220.

Fraga, S.

S. Fraga, J. Kerwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsever, Amsterdam, New York, 1976).

Hagen, L.

W. C. Martin, R. Zalubas, and L. Hagen, Atomic Energy Levels, The Rare Earth Elements, NSRDS-NBS 60 (National Bureau of Standards, Washington, D.C., 1978).

Isler, R. D.

R. D. Isler, R. V. Neidigh, and R. D. Cowan, “Tungsten radiation from Tokamak-produced plasmas,” Phys. Lett. 63A, 295–297 (1977).

Kennedy, E. T.

Kerwowski, J.

S. Fraga, J. Kerwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsever, Amsterdam, New York, 1976).

Martin, W. C.

W. C. Martin, R. Zalubas, and L. Hagen, Atomic Energy Levels, The Rare Earth Elements, NSRDS-NBS 60 (National Bureau of Standards, Washington, D.C., 1978).

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Vol. III (National Bureau of Standards, Washington, D.C., 1958);E. Alexander and et al., “Classification of transitions in the EUV spectra of Y ix–xiii, Zr x–xiv, Nb xi–xv and Mo xii–xvi,” J. Opt. Soc. Am. 61, 508–514 (1971); M. Evan-Zohar and B. S. Fraenkel, “A study of the EUV spectra of the fifth period,” J. Phys. B 5, 1596–1613 (1972).
[Crossref]

Neidigh, R. V.

R. D. Isler, R. V. Neidigh, and R. D. Cowan, “Tungsten radiation from Tokamak-produced plasmas,” Phys. Lett. 63A, 295–297 (1977).

O’Sullivan, G.

P. K. Carroll, E. T. Kennedy, and G. O’Sullivan, “Laser-produced continua for absorption spectroscopy in the VUV and XUV,” Appl. Opt. 19, 1454–1462 (1980).
[Crossref] [PubMed]

P. K. Carroll and G. O’Sullivan, “Ground state configurations of ionic species Z= 57 through 74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” to be published.

Radke, E. R.

E. R. Radke, “On the character of the intense 4d–4f resonances in atomic La and Tm,” J. Phys. B 12, L71–75; “Systematic comparison between the 4d spectra of lanthanide atoms and solids,” L77–81 (1979).

Saxena, K. M. S.

S. Fraga, J. Kerwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsever, Amsterdam, New York, 1976).

Sugar, J.

Tonon, G. F.

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44, 3524–3537 (1973).
[Crossref]

Zalubas, R.

W. C. Martin, R. Zalubas, and L. Hagen, Atomic Energy Levels, The Rare Earth Elements, NSRDS-NBS 60 (National Bureau of Standards, Washington, D.C., 1978).

Appl. Opt. (1)

J. Appl. Phys. (1)

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44, 3524–3537 (1973).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

E. R. Radke, “On the character of the intense 4d–4f resonances in atomic La and Tm,” J. Phys. B 12, L71–75; “Systematic comparison between the 4d spectra of lanthanide atoms and solids,” L77–81 (1979).

Phys. Lett. (1)

R. D. Isler, R. V. Neidigh, and R. D. Cowan, “Tungsten radiation from Tokamak-produced plasmas,” Phys. Lett. 63A, 295–297 (1977).

Other (5)

P. K. Carroll and G. O’Sullivan, “Ground state configurations of ionic species Z= 57 through 74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” to be published.

C. E. Moore, Atomic Energy Levels, Vol. III (National Bureau of Standards, Washington, D.C., 1958);E. Alexander and et al., “Classification of transitions in the EUV spectra of Y ix–xiii, Zr x–xiv, Nb xi–xv and Mo xii–xvi,” J. Opt. Soc. Am. 61, 508–514 (1971); M. Evan-Zohar and B. S. Fraenkel, “A study of the EUV spectra of the fifth period,” J. Phys. B 5, 1596–1613 (1972).
[Crossref]

S. Fraga, J. Kerwowski, and K. M. S. Saxena, Handbook of Atomic Data (Elsever, Amsterdam, New York, 1976).

B. Edlén, “Atomic Spectra,” in Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1964), Chap. XXVII, pp. 80–220.

W. C. Martin, R. Zalubas, and L. Hagen, Atomic Energy Levels, The Rare Earth Elements, NSRDS-NBS 60 (National Bureau of Standards, Washington, D.C., 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The emission resonances of cesium through neodymium in the grazing-incidence region. In the case of cesium the plasma was optically thick, and hence some strong absorption is in evidence. In particular the strong sharp line at the right-hand side is the 4d10 1S–4d94f 1P resonance line of Cs x at 109.588 Å. In the other cases shown the plasmas may be considered as optically thin.

Fig. 2
Fig. 2

The emission resonances of europium, gadolinium, and dysprosium in the grazing-incidence region. Because of difficulties in handling the target materials, the spectrum of terbium, which falls between gadolinium and dysprosium, could be obtained only weakly and is not shown. The strong emission line in the europium spectrum is the 1s–2p resonance line of Be iv at 75.928 Å and occurs in the reference spectrum (a laser-produced plasma on a target of beryllium oxide). A common wavelength scale is used in this figure to demonstrate the movement of the resonances toward shorter wavelength with increasing Z.

Fig. 3
Fig. 3

Dominant ion stage as a function of electron temperature for lanthanum and gadolinium according to the plasma model of Colombant and Tonon.3 The ordinate scale is in electron volts.

Fig. 4
Fig. 4

Dominant ion stages of the elements cesium through tungsten in laser-produced plasmas at an electron temperature of 55 eV according to the model of Colombant and Tonon.3

Fig. 5
Fig. 5

Dependence of 4d–4f transition energies on atomic number Z. Open circles, this paper (Table 1); crosses, data from plasmas of tin through iodine; open triangles, assigned to tungsten in Tokomak plasma9; filled squares, absorption of neutral vapors.10

Tables (1)

Tables Icon

Table 1 Target Compounds and Wavelengths, λmax, of Emission Resonances at Maximum Intensity