Abstract

An extension is derived of a bending-loss-coefficient equation derived by Marcuse [J. Opt. Soc. Am. <b>66</b>, 216 (1976)]. The original derivation employed approximations that limited the loss formula to low-order modes. We develop a closed-form integral and an algorithm for an approximate integral that allow loss coefficients to be computed for high-order modes. The overall loss of a multimode fiber is then analyzed by making simple assumptions about the power distribution among the modes of a fiber.

© 1981 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Miller and V. I. Talanow, "Electromagnetic surface waves guided by a boundary with small curvature," Zh. Tekh. Fiz. 26, 2755 (1956).
  2. E. A. J. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2013–2132 (1969).
  3. L. Lewin, "Radiation from curved dielectric slabs and fibers," IEEE Trans. Microwave Theory Tech. MTT-22, 718–727 (1974).
  4. J. A. Arnaud, "Transverse coupling in fiber optics. Part III: bending losses," Bell Syst. Tech. J. 53, 1379–1394 (1974).
  5. A. W. Snyder, I. White, and D. J. Mitchell, "Radiation from bent optical waveguides," Electron. Lett. 11, 332–333 (1975).
  6. V. V. Shevchenko, "Radiation losses in bent waveguides for surface waves," Radiophys. Quantum Electron. 14, 607–614 (1973).
  7. D. C. Chang and E. F. Kuester, "General theory of surface-wave propagation on a curved optical waveguide of arbitrary crosssection," IEEE J. Quantum Electron. QE-11, 903–907 (1975).
  8. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).
  9. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216–220 (1976).
  10. D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. Am. 66, 311–320 (1976).
  11. D. Gloge, "Weakly guided fibers," Appl. Opt. 10, 2252–2258 (1971).
  12. R. Terras, "A Miller algorithm for an incomplete Bessel function," J. Comput. Phys. 39, 233–240 (1981).
  13. R. Terras, "Algorithms for integrals of Bessel functions and multivariate Gaussian integrals," J. Comput. Phys. 41, 192–199 (1981).
  14. M. Lebedev, Special Functions (Dover, New York, 1965).
  15. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Nat. Bur. of Stand. (U.S.) Applied Mathematics Service 55 (U.S. Government Printing Office, Washington, D.C., 1964).

1981 (2)

R. Terras, "A Miller algorithm for an incomplete Bessel function," J. Comput. Phys. 39, 233–240 (1981).

R. Terras, "Algorithms for integrals of Bessel functions and multivariate Gaussian integrals," J. Comput. Phys. 41, 192–199 (1981).

1976 (2)

1975 (2)

A. W. Snyder, I. White, and D. J. Mitchell, "Radiation from bent optical waveguides," Electron. Lett. 11, 332–333 (1975).

D. C. Chang and E. F. Kuester, "General theory of surface-wave propagation on a curved optical waveguide of arbitrary crosssection," IEEE J. Quantum Electron. QE-11, 903–907 (1975).

1974 (2)

L. Lewin, "Radiation from curved dielectric slabs and fibers," IEEE Trans. Microwave Theory Tech. MTT-22, 718–727 (1974).

J. A. Arnaud, "Transverse coupling in fiber optics. Part III: bending losses," Bell Syst. Tech. J. 53, 1379–1394 (1974).

1973 (1)

V. V. Shevchenko, "Radiation losses in bent waveguides for surface waves," Radiophys. Quantum Electron. 14, 607–614 (1973).

1971 (1)

1969 (1)

E. A. J. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2013–2132 (1969).

1956 (1)

M. A. Miller and V. I. Talanow, "Electromagnetic surface waves guided by a boundary with small curvature," Zh. Tekh. Fiz. 26, 2755 (1956).

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Nat. Bur. of Stand. (U.S.) Applied Mathematics Service 55 (U.S. Government Printing Office, Washington, D.C., 1964).

Arnaud, J. A.

J. A. Arnaud, "Transverse coupling in fiber optics. Part III: bending losses," Bell Syst. Tech. J. 53, 1379–1394 (1974).

Chang, D. C.

D. C. Chang and E. F. Kuester, "General theory of surface-wave propagation on a curved optical waveguide of arbitrary crosssection," IEEE J. Quantum Electron. QE-11, 903–907 (1975).

Gloge, D.

Kuester, E. F.

D. C. Chang and E. F. Kuester, "General theory of surface-wave propagation on a curved optical waveguide of arbitrary crosssection," IEEE J. Quantum Electron. QE-11, 903–907 (1975).

Lebedev, M.

M. Lebedev, Special Functions (Dover, New York, 1965).

Lewin, L.

L. Lewin, "Radiation from curved dielectric slabs and fibers," IEEE Trans. Microwave Theory Tech. MTT-22, 718–727 (1974).

Marcatili, E. A. J.

E. A. J. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2013–2132 (1969).

Marcuse, D.

Miller, M. A.

M. A. Miller and V. I. Talanow, "Electromagnetic surface waves guided by a boundary with small curvature," Zh. Tekh. Fiz. 26, 2755 (1956).

Mitchell, D. J.

A. W. Snyder, I. White, and D. J. Mitchell, "Radiation from bent optical waveguides," Electron. Lett. 11, 332–333 (1975).

Shevchenko, V. V.

V. V. Shevchenko, "Radiation losses in bent waveguides for surface waves," Radiophys. Quantum Electron. 14, 607–614 (1973).

Snyder, A. W.

A. W. Snyder, I. White, and D. J. Mitchell, "Radiation from bent optical waveguides," Electron. Lett. 11, 332–333 (1975).

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Nat. Bur. of Stand. (U.S.) Applied Mathematics Service 55 (U.S. Government Printing Office, Washington, D.C., 1964).

Talanow, V. I.

M. A. Miller and V. I. Talanow, "Electromagnetic surface waves guided by a boundary with small curvature," Zh. Tekh. Fiz. 26, 2755 (1956).

Terras, R.

R. Terras, "A Miller algorithm for an incomplete Bessel function," J. Comput. Phys. 39, 233–240 (1981).

R. Terras, "Algorithms for integrals of Bessel functions and multivariate Gaussian integrals," J. Comput. Phys. 41, 192–199 (1981).

White, I.

A. W. Snyder, I. White, and D. J. Mitchell, "Radiation from bent optical waveguides," Electron. Lett. 11, 332–333 (1975).

Appl. Opt. (1)

Bell Syst. Tech. J. (2)

E. A. J. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2013–2132 (1969).

J. A. Arnaud, "Transverse coupling in fiber optics. Part III: bending losses," Bell Syst. Tech. J. 53, 1379–1394 (1974).

Electron. Lett. (1)

A. W. Snyder, I. White, and D. J. Mitchell, "Radiation from bent optical waveguides," Electron. Lett. 11, 332–333 (1975).

IEEE J. Quantum Electron. (1)

D. C. Chang and E. F. Kuester, "General theory of surface-wave propagation on a curved optical waveguide of arbitrary crosssection," IEEE J. Quantum Electron. QE-11, 903–907 (1975).

IEEE Trans. Microwave Theory Tech. (1)

L. Lewin, "Radiation from curved dielectric slabs and fibers," IEEE Trans. Microwave Theory Tech. MTT-22, 718–727 (1974).

J. Comput. Phys. (2)

R. Terras, "A Miller algorithm for an incomplete Bessel function," J. Comput. Phys. 39, 233–240 (1981).

R. Terras, "Algorithms for integrals of Bessel functions and multivariate Gaussian integrals," J. Comput. Phys. 41, 192–199 (1981).

J. Opt. Soc. Am. (2)

Radiophys. Quantum Electron. (1)

V. V. Shevchenko, "Radiation losses in bent waveguides for surface waves," Radiophys. Quantum Electron. 14, 607–614 (1973).

Zh. Tekh. Fiz. (1)

M. A. Miller and V. I. Talanow, "Electromagnetic surface waves guided by a boundary with small curvature," Zh. Tekh. Fiz. 26, 2755 (1956).

Other (3)

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).

M. Lebedev, Special Functions (Dover, New York, 1965).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Nat. Bur. of Stand. (U.S.) Applied Mathematics Service 55 (U.S. Government Printing Office, Washington, D.C., 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.