Abstract

We present a new geometry for producing unusual photo yields from traditional photocathodes by exciting a surface plasmon in an underlying metal film. Photo yields calculated for this geometry exhibit an unusually strong dependence on photon polarization and angle of incidence. Some enhancement of the photoelectron yield is also found.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, C. Reece, and L. Mandel, “Does a photodetector always measure the rate of arrival of photons?” J. Opt. Soc. Am. 71, 115–117 (1981).
    [CrossRef]
  2. S. A. Hoenig and A. Cutler, “Polarization sensitivity of the RCA 6903 photocathode tube,” Appl. Opt. 5, 1091–1092 (1966).
    [CrossRef] [PubMed]
  3. E. G. Ramberg, “Optical factors in the photoemission of thin films,” Appl. Opt. 6, 2163–2170 (1967).
    [CrossRef] [PubMed]
  4. T. Hirschfeld, “Improvements in photomultipliers with total internal reflection sensitivity enhancement,” Appl. Opt. 7, 443–449 (1968).
    [CrossRef] [PubMed]
  5. J. B. Oke and R. E. Schild, “A practical multiple reflection technique for improving the quantum efficiency of photomultiplier tubes,” Appl. Opt. 7, 617–621 (1968).
    [CrossRef] [PubMed]
  6. D. P. Jones, “Photomultiplier sensitivity variation with angle of incidence on the photocathode,” Appl. Opt. 15, 910–914 (1976).
    [CrossRef] [PubMed]
  7. W. Greschat, H. Heinrich, and P. Römer, “Quantum yield of Cs3Sb photocathodes as a function of thickness and angle of incidence,” Electronics Electron Phys. 40A, 397–408 (1976).
    [CrossRef]
  8. J. G. Endriz, “Calculation of the surface photoelectric effect,” Phys. Rev. B 7, 3464–3481 (1973).
    [CrossRef]
  9. T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance field,” Phys. Rev. B 11, 2750–2758 (1975).
    [CrossRef]
  10. R. H. Ritchie, “Surface plasmon in solids,” Surf. Sci. 34, 1–19 (1973).
    [CrossRef]
  11. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver film—a novel undergraduate experiment,” Am. J. Phys. 47, 630–636 (1975).
    [CrossRef]
  12. J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett. 25, 261–262 (1974).
    [CrossRef]
  13. K. Hirschberg and K. Deutscher, Phys. Status Solidi 26, 527–535 (1968).
    [CrossRef]
  14. M. Cardona, “Fresnel reflection and surface plasmons,” Am. J. Phys. 39, 1277 (1971).
    [CrossRef]
  15. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
    [CrossRef]
  16. J. E. Sipe, “Bulk-selvedge coupling theory for the optical properties of surfaces,” Phys. Rev. B 22, 1589–1599 (1980).
    [CrossRef]
  17. W. P. Chen and J. M. Chen, “Surface plasma-wave study of submonolayer Cs and Cs–O covered Ag surfaces,” Surf. Sci. 91, 601–617 (1980).
    [CrossRef]
  18. J. E. Sipe, “Surface plasmon-enhanced absorption of light by adsorbed molecules,” Solid State Commun. 33, 7–9 (1980).
    [CrossRef]
  19. P. J. Vernier, “Photoemission,” in Progress in Optics XIV (North-Holland, Amsterdam, 1976), pp. 245–325.
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).
    [CrossRef]
  21. L. Levi, Applied Optics (Wiley, New York, 1980), Vol. 2, p. 914.

1981 (1)

1980 (3)

J. E. Sipe, “Bulk-selvedge coupling theory for the optical properties of surfaces,” Phys. Rev. B 22, 1589–1599 (1980).
[CrossRef]

W. P. Chen and J. M. Chen, “Surface plasma-wave study of submonolayer Cs and Cs–O covered Ag surfaces,” Surf. Sci. 91, 601–617 (1980).
[CrossRef]

J. E. Sipe, “Surface plasmon-enhanced absorption of light by adsorbed molecules,” Solid State Commun. 33, 7–9 (1980).
[CrossRef]

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

1976 (2)

D. P. Jones, “Photomultiplier sensitivity variation with angle of incidence on the photocathode,” Appl. Opt. 15, 910–914 (1976).
[CrossRef] [PubMed]

W. Greschat, H. Heinrich, and P. Römer, “Quantum yield of Cs3Sb photocathodes as a function of thickness and angle of incidence,” Electronics Electron Phys. 40A, 397–408 (1976).
[CrossRef]

1975 (2)

T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance field,” Phys. Rev. B 11, 2750–2758 (1975).
[CrossRef]

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver film—a novel undergraduate experiment,” Am. J. Phys. 47, 630–636 (1975).
[CrossRef]

1974 (1)

J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett. 25, 261–262 (1974).
[CrossRef]

1973 (2)

R. H. Ritchie, “Surface plasmon in solids,” Surf. Sci. 34, 1–19 (1973).
[CrossRef]

J. G. Endriz, “Calculation of the surface photoelectric effect,” Phys. Rev. B 7, 3464–3481 (1973).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).
[CrossRef]

1971 (1)

M. Cardona, “Fresnel reflection and surface plasmons,” Am. J. Phys. 39, 1277 (1971).
[CrossRef]

1968 (3)

1967 (1)

1966 (1)

Arakawa, E. T.

T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance field,” Phys. Rev. B 11, 2750–2758 (1975).
[CrossRef]

Callcott, T. A.

T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance field,” Phys. Rev. B 11, 2750–2758 (1975).
[CrossRef]

Cardona, M.

M. Cardona, “Fresnel reflection and surface plasmons,” Am. J. Phys. 39, 1277 (1971).
[CrossRef]

Chen, J. M.

W. P. Chen and J. M. Chen, “Surface plasma-wave study of submonolayer Cs and Cs–O covered Ag surfaces,” Surf. Sci. 91, 601–617 (1980).
[CrossRef]

Chen, W. P.

W. P. Chen and J. M. Chen, “Surface plasma-wave study of submonolayer Cs and Cs–O covered Ag surfaces,” Surf. Sci. 91, 601–617 (1980).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).
[CrossRef]

Cutler, A.

Deutscher, K.

K. Hirschberg and K. Deutscher, Phys. Status Solidi 26, 527–535 (1968).
[CrossRef]

Durnin, J.

Endriz, J. G.

J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett. 25, 261–262 (1974).
[CrossRef]

J. G. Endriz, “Calculation of the surface photoelectric effect,” Phys. Rev. B 7, 3464–3481 (1973).
[CrossRef]

Greschat, W.

W. Greschat, H. Heinrich, and P. Römer, “Quantum yield of Cs3Sb photocathodes as a function of thickness and angle of incidence,” Electronics Electron Phys. 40A, 397–408 (1976).
[CrossRef]

Heinrich, H.

W. Greschat, H. Heinrich, and P. Römer, “Quantum yield of Cs3Sb photocathodes as a function of thickness and angle of incidence,” Electronics Electron Phys. 40A, 397–408 (1976).
[CrossRef]

Hirschberg, K.

K. Hirschberg and K. Deutscher, Phys. Status Solidi 26, 527–535 (1968).
[CrossRef]

Hirschfeld, T.

Hoenig, S. A.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).
[CrossRef]

Jones, D. P.

Levi, L.

L. Levi, Applied Optics (Wiley, New York, 1980), Vol. 2, p. 914.

Mandel, L.

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver film—a novel undergraduate experiment,” Am. J. Phys. 47, 630–636 (1975).
[CrossRef]

Oke, J. B.

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Ramberg, E. G.

Reece, C.

Ritchie, R. H.

R. H. Ritchie, “Surface plasmon in solids,” Surf. Sci. 34, 1–19 (1973).
[CrossRef]

Römer, P.

W. Greschat, H. Heinrich, and P. Römer, “Quantum yield of Cs3Sb photocathodes as a function of thickness and angle of incidence,” Electronics Electron Phys. 40A, 397–408 (1976).
[CrossRef]

Schild, R. E.

Simon, H. J.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver film—a novel undergraduate experiment,” Am. J. Phys. 47, 630–636 (1975).
[CrossRef]

Sipe, J. E.

J. E. Sipe, “Surface plasmon-enhanced absorption of light by adsorbed molecules,” Solid State Commun. 33, 7–9 (1980).
[CrossRef]

J. E. Sipe, “Bulk-selvedge coupling theory for the optical properties of surfaces,” Phys. Rev. B 22, 1589–1599 (1980).
[CrossRef]

Vernier, P. J.

P. J. Vernier, “Photoemission,” in Progress in Optics XIV (North-Holland, Amsterdam, 1976), pp. 245–325.

Watson, J. G.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver film—a novel undergraduate experiment,” Am. J. Phys. 47, 630–636 (1975).
[CrossRef]

Am. J. Phys. (2)

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver film—a novel undergraduate experiment,” Am. J. Phys. 47, 630–636 (1975).
[CrossRef]

M. Cardona, “Fresnel reflection and surface plasmons,” Am. J. Phys. 39, 1277 (1971).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

J. G. Endriz, “Surface waves and grating-tuned photocathodes,” Appl. Phys. Lett. 25, 261–262 (1974).
[CrossRef]

Electronics Electron Phys. (1)

W. Greschat, H. Heinrich, and P. Römer, “Quantum yield of Cs3Sb photocathodes as a function of thickness and angle of incidence,” Electronics Electron Phys. 40A, 397–408 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. B (3)

J. G. Endriz, “Calculation of the surface photoelectric effect,” Phys. Rev. B 7, 3464–3481 (1973).
[CrossRef]

T. A. Callcott and E. T. Arakawa, “Volume and surface photoemission processes from plasmon resonance field,” Phys. Rev. B 11, 2750–2758 (1975).
[CrossRef]

J. E. Sipe, “Bulk-selvedge coupling theory for the optical properties of surfaces,” Phys. Rev. B 22, 1589–1599 (1980).
[CrossRef]

Phys. Status Solidi (1)

K. Hirschberg and K. Deutscher, Phys. Status Solidi 26, 527–535 (1968).
[CrossRef]

Solid State Commun. (1)

J. E. Sipe, “Surface plasmon-enhanced absorption of light by adsorbed molecules,” Solid State Commun. 33, 7–9 (1980).
[CrossRef]

Surf. Sci. (3)

W. P. Chen and J. M. Chen, “Surface plasma-wave study of submonolayer Cs and Cs–O covered Ag surfaces,” Surf. Sci. 91, 601–617 (1980).
[CrossRef]

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

R. H. Ritchie, “Surface plasmon in solids,” Surf. Sci. 34, 1–19 (1973).
[CrossRef]

Other (2)

P. J. Vernier, “Photoemission,” in Progress in Optics XIV (North-Holland, Amsterdam, 1976), pp. 245–325.

L. Levi, Applied Optics (Wiley, New York, 1980), Vol. 2, p. 914.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry for surface-plasmon-assisted photoemission.

Fig. 2
Fig. 2

|E|2 = I in the metal and photocathode at an incident angle of 46.6° for an incident beam at 2 eV. The values are normalized to n |E|2 in the incident beam, where n is the refractive index of the glass. The discontinuity at z = D occurs because the normal component of E is not continuous across the interface. The dotted line indicates the |E|2 = I that would result for an infinite thickness of silver faced onto the glass.

Fig. 3
Fig. 3

p Photo yield (solid line) and s photo yield (dashed line) for the geometry of Fig. 1. The peak in the p photo yield is associated with surface-plasmon excitation; the cusp in the s photo yield occurs at the angle where the fields become evanescent in the vacuum. Note the different s and p photo-yield scales.

Fig. 4
Fig. 4

The traditional photoemission geometry: p photo yield (solid line) and s photo yield (dashed line) at an incident energy of 2 eV.

Tables (1)

Tables Icon

Table 1 Optical Constants at 2 eV

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( θ ) = ( N cos θ ) - 1 × z = D z = D + d | E ( r ) 2 exp [ - ( D + d - z ) l ] d z ,