Abstract

By direct numerical-integration comparisons, it is established that the Fresnel approximation for collimated propagation is quite good (within about 2% in amplitude and 0.02 rad in phase) in every case, including that with the limit of a high Fresnel number. Moreover, the Fresnel approximation begins to break down in phase for spherical-wave propagation for beams faster than about ƒ/12. It has been discovered, however, that if one also invokes the paraxial approximation, that is, replaces the spherical wave by a quadratic phase front, then the Fresnel approximation becomes valid for expanding (or diverging) beams as well. This result is substantiated through the use of stationary-phase arguments.

© 1981 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription