Abstract

The effect of the target size on the detection of luminance and chromaticity flicker and gratings was studied. Discrimination ellipses in a luminance–chromaticity plane were determined with square test areas subtending from 14° to 1°. Pure luminance modulation thresholds and pure chromaticity modulation thresholds were obtained for square targets subtending from 1/16° to 2°. Square-wave stimuli were presented on a color television monitor; the mean color of the screen was yellow, the average retinal illuminance was 350 td. The main effect of enlarging the field size is that the threshold for any luminance-chromaticity combination decreases monotonically except when spatial frequencies are high. The summation area for detecting a fine bar pattern is at least 8 × 8 periods; the integration area for detecting flicker is more than 1° × 1°. This holds for any luminance–chromaticity mixture. For a fixed spatial or a fixed temporal frequency the change in sensitivity sometimes depends strongly on the ratio of luminance modulation to chromaticity modulation. The main conclusion of this study is that if a target is predominantly yellow the target size has similar influence on the sensitivity to both luminance and chromaticity contrast.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. H. Schade, “Optical and photoelectric analog of the eye,” J. Opt. Soc. Am. 46, 721–739 (1956).
    [CrossRef] [PubMed]
  2. D. H. Kelly, “Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements,” J. Opt. Soc. Am. 51, 422–429 (1961).
    [CrossRef] [PubMed]
  3. J. G. Robson, “Spatial and temporal contrast–sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
    [CrossRef]
  4. F. L. van Nes, J. J. Koenderink, H. Nas, and M. A. Bouman, “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967).
    [CrossRef] [PubMed]
  5. D. H. Kelly, “Effects of sharp edges in a flickering field,” J. Opt. Soc. Am. 49, 730–732 (1959).
    [CrossRef] [PubMed]
  6. U. T. Keesey, “Variables determining flicker sensitivity in small fields,” J. Opt. Soc. Am. 60, 390–398 (1970).
    [CrossRef] [PubMed]
  7. J. Hoekstra, D. P. J. van der Goot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
    [CrossRef] [PubMed]
  8. R. L. Savoy and J. J. McCann, “Visibility of low-spatial-frequency sine-wave targets: Dependence on number of cycles,” J. Opt. Soc. Am. 65, 343–350 (1975).
    [CrossRef] [PubMed]
  9. E. R. Howell and R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
    [CrossRef] [PubMed]
  10. J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter,” J. Opt. Soc. Am. 68, 854–860 (1978).
    [CrossRef] [PubMed]
  11. K. J. McCree, “Small field tritanopia and the effects of voluntary fixation,” Opt. Acta 7, 317–323 (1960).
    [CrossRef]
  12. G. J. C. van der Horst and M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969).
    [CrossRef] [PubMed]
  13. J. J. Koenderink and A. J. van Doom, “Spatial summation for complex bar patterns,” Vision Res. 20, 169–176 (1980).
    [CrossRef] [PubMed]
  14. R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
    [CrossRef] [PubMed]
  15. E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt. Soc. Am. 63, 1173–1174 (1973).
    [CrossRef] [PubMed]

1980 (1)

J. J. Koenderink and A. J. van Doom, “Spatial summation for complex bar patterns,” Vision Res. 20, 169–176 (1980).
[CrossRef] [PubMed]

1978 (2)

1975 (1)

1974 (2)

J. Hoekstra, D. P. J. van der Goot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef] [PubMed]

1973 (1)

1970 (1)

1969 (1)

1967 (1)

1966 (1)

1961 (1)

1960 (1)

K. J. McCree, “Small field tritanopia and the effects of voluntary fixation,” Opt. Acta 7, 317–323 (1960).
[CrossRef]

1959 (1)

1956 (1)

Bilsen, F. A.

J. Hoekstra, D. P. J. van der Goot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Bouman, M. A.

Bueno de Mesquita, A. E.

Granger, E. M.

Hess, R. F.

E. R. Howell and R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

Heurtley, J. C.

Hoekstra, J.

J. Hoekstra, D. P. J. van der Goot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

Howell, E. R.

E. R. Howell and R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

Keesey, U. T.

Kelly, D. H.

Koenderink, J. J.

McCann, J. J.

McCree, K. J.

K. J. McCree, “Small field tritanopia and the effects of voluntary fixation,” Opt. Acta 7, 317–323 (1960).
[CrossRef]

Nas, H.

Quick, R. F.

R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef] [PubMed]

Robson, J. G.

Savoy, R. L.

Schade, O. H.

Slappendel, S.

van den Brink, G.

J. Hoekstra, D. P. J. van der Goot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

van der Goot, D. P. J.

J. Hoekstra, D. P. J. van der Goot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

van der Horst, G. J. C.

van Doom, A. J.

J. J. Koenderink and A. J. van Doom, “Spatial summation for complex bar patterns,” Vision Res. 20, 169–176 (1980).
[CrossRef] [PubMed]

van Nes, F. L.

J. Opt. Soc. Am. (10)

O. H. Schade, “Optical and photoelectric analog of the eye,” J. Opt. Soc. Am. 46, 721–739 (1956).
[CrossRef] [PubMed]

G. J. C. van der Horst and M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969).
[CrossRef] [PubMed]

U. T. Keesey, “Variables determining flicker sensitivity in small fields,” J. Opt. Soc. Am. 60, 390–398 (1970).
[CrossRef] [PubMed]

E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt. Soc. Am. 63, 1173–1174 (1973).
[CrossRef] [PubMed]

R. L. Savoy and J. J. McCann, “Visibility of low-spatial-frequency sine-wave targets: Dependence on number of cycles,” J. Opt. Soc. Am. 65, 343–350 (1975).
[CrossRef] [PubMed]

J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter,” J. Opt. Soc. Am. 68, 854–860 (1978).
[CrossRef] [PubMed]

F. L. van Nes, J. J. Koenderink, H. Nas, and M. A. Bouman, “Spatiotemporal modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 1082–1088 (1967).
[CrossRef] [PubMed]

D. H. Kelly, “Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements,” J. Opt. Soc. Am. 51, 422–429 (1961).
[CrossRef] [PubMed]

J. G. Robson, “Spatial and temporal contrast–sensitivity functions of the visual system,” J. Opt. Soc. Am. 56, 1141–1142 (1966).
[CrossRef]

D. H. Kelly, “Effects of sharp edges in a flickering field,” J. Opt. Soc. Am. 49, 730–732 (1959).
[CrossRef] [PubMed]

Kybernetik (1)

R. F. Quick, “A vector-magnitude model of contrast detection,” Kybernetik 16, 65–67 (1974).
[CrossRef] [PubMed]

Opt. Acta (1)

K. J. McCree, “Small field tritanopia and the effects of voluntary fixation,” Opt. Acta 7, 317–323 (1960).
[CrossRef]

Vision Res. (3)

J. J. Koenderink and A. J. van Doom, “Spatial summation for complex bar patterns,” Vision Res. 20, 169–176 (1980).
[CrossRef] [PubMed]

J. Hoekstra, D. P. J. van der Goot, G. van den Brink, and F. A. Bilsen, “The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns,” Vision Res. 14, 365–368 (1974).
[CrossRef] [PubMed]

E. R. Howell and R. F. Hess, “The functional area for summation to threshold for sinusoidal gratings,” Vision Res. 18, 369–374 (1978).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

FIG. 1
FIG. 1

Contrast detection thresholds determined for several ratios of luminance modulation to chromaticity modulation for a 1° target and a temporal frequency of 15 Hz. The average dominant wavelength was 582 nm and the average retinal illuminance was 350 td for every modulation depth; thus two opposite points refer to the same threshold. The threshold curve is a discrimination ellipse, which is determined by least-squares fitting of the data.

FIG. 2
FIG. 2

Discrimination ellipses for several target sizes drawn to the same scale in a luminance–chromaticity plane for λd = 582 nm and for a retinal illuminance of 350 td. The positions of the origins refer to the temporal frequencies given below the ellipses. The targets used, starting from the inside, are 1°, ½°, and ¼°.

FIG. 3
FIG. 3

Discrimination ellipses for several target sizes drawn to the same scale in a luminance–chromaticity plane for λd = 582 nm and for a retinal illuminance of 350 td. The positions of the origins refer to the spatial frequencies given at the left-hand side of the ellipses. The targets used, starting from the Inside, are 1°, ½°, and ¼°, except for the 2 cycle per degree (cpd) ellipses, which were only determined for the 1° and ½° target, because a ¼° target cannot contain a 2-cpd grating.

FIG. 4
FIG. 4

Temporal chromaticity threshold functions for several target sizes. The abscissa is the temporal frequency (Ft in Hz); the ordinate is the modulation depth (M in nm). The targets used, reading from top to bottom, are 1/18°, ⅛°, ¼°, ½°, 1°, and 2°.

FIG. 5
FIG. 5

Temporal luminance threshold functions for several target sizes. The method of plotting is similar to that used in Fig. 4.

FIG. 6
FIG. 6

Temporal chromaticity contrast detection thresholds M (in nm modulation depth) as a function of the target width (W in degrees). The curves are for different temporal frequencies: stars, 15 Hz; open circles, 7½ Hz; squares, 3¾ Hz; closed circles, 1 Hz.

FIG. 7
FIG. 7

Temporal luminance contrast detection thresholds M (in % modulation depth) as a function of the target width (W in degrees). The method of plotting is similar to that used in Fig. 6.

FIG. 8
FIG. 8

Spatial chromaticity threshold functions for several target sizes. The abscissa is the spatial frequency (Fs in cpd); the ordinate is the modulation depth (M in nm). The targets used, reading from top to bottom, are ⅛°, ¼°, ½°, 1°, and 2°.

FIG. 9
FIG. 9

Spatial luminance threshold functions for several target sizes. The method of plotting is similar to that used in Fig. 8.

FIG. 10
FIG. 10

Spatial chromaticity contrast detection thresholds M (in nm modulation depth) as a function of the target width (W in degrees). The curves are for different spatial frequencies: open stars, 32 cpd; closed stars, 16 cpd; open circles, 8 cpd; squares, 4 cpd; circles with center dot, 2 cpd; closed circles, 1 cpd.

FIG. 11
FIG. 11

Spatial luminance contrast detection thresholds M (in % modulation depth) as a function of the target width (W in degrees). The method of plotting is similar to that used in Fig. 10.

FIG. 12
FIG. 12

Lowest contrast detection thresholds obtained, irrespective of the temporal or spatial frequency, as a function of the target width (W in degrees). Open circles, lowest chromaticity thresholds in nm; closed circles, lowest luminance thresholds in %.