Abstract

The high-dispersion absorption spectrum of Cu i is reported for the 1570–2500 Å region. Observations include the electric dipole allowed transitions 3d104s2S –3 d10np2P° (n = 5–57), 3d94s2 2D –3 d10np2P° (n = 6–17) and 3d94s2 2D –3 d10nf2F° (n = 5,8), the electric quadrupole allowed transitions 3d104s2S –3 d10nd2D (n = 4–8), and the forbidden transitions 3d104s2S –3 d10ns2S (n = 20–41). A number of transitions from 3d104s2S and 3d94s2 2D to levels associated with excited terms previously designated w, x, y, and z are also reported. An improved ionization potential for Cu i is 62 317.44 ± 0.10 cm−1.

© 1980 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Shenstone, “The first spectrum of copper (Cu i),” Phil. Trans. R. Soc. London Ser. A 241, 297–322 (1948).
    [Crossref]
  2. G. Tondello, “Absorption spectrum of Cu i in the vacuum ultraviolet,” J. Opt. Soc. Am. 63, 346–352 (1973).
    [Crossref]
  3. C. E. Moore, Atomic Energy Levels, Vol. II, Natl. Bur. Std., U.S. Circ. No. 467 (U.S. Government Printing Office, Washington, D.C., 1962), p. 112.
  4. W. C. Martin and J. Sugar, “Perturbations and coupling in the d9sp configurations of Cu i, Zn ii, Ag i, Cd ii, and Tl iii,” J. Opt. Soc. Am. 59, 1266–1280 (1969).
    [Crossref]
  5. J. P. Connerade, M. A. Baig, M. W. D. Mansfield, and E. Radtke, “The absorption spectrum of Ag i in the vacuum ultraviolet,” Proc. R. Soc. London Ser. A 361, 379–398 (1978).
    [Crossref]
  6. C. M. Brown, R. H. Naber, S. G. Tilford, and M. L. Ginter, “High temperature furnace system for vacuum ultraviolet spectroscopic studies,” Appl. Opt. 12, 1858–1864 (1973).
    [Crossref] [PubMed]
  7. C. M. Brown and M. L. Ginter, “Absorption spectrum of Ag i between 1540 and 1850 Å,” J. Opt. Soc. Am. 67, 1323–1327 (1977).
    [Crossref]
  8. C. M. Brown and M. L. Ginter, “Absorption spectrum of Au i between 1300 and 1900 Å,” J. Opt. Soc. Am. 68, 243–246 (1978).
    [Crossref]
  9. C. M. Brown and M. L. Ginter, “The absorption spectrum of CuH in the 2350 Å to 1890 Å region,” J. Mol. Spectrosc. 80, 145–157 (1980).
    [Crossref]
  10. In estimating the intensities, an effort was made to maintain a consistent scale over the wide ranges of wavelength, temperature, pressure, exposure time, and development time employed in this work. However, corrections for these variables were largely subjective. The intensity of a line was judged relative to the intensities of nearby lines. Consequently, intensities of lines whose wavelengths differ by more than ~50 Å are not necessarily comparable. Finally, the intensity scales for sharp lines and diffuse lines are not necessarily related.
  11. R. H. Garstang, “Forbidden Transitions,” in Atomic and Molecular Processes, edited by D. R. Bates (Academic, New York, 1962), pp. 3–5.
  12. G. H. Shortley, “The computation of quadrupole and magnetic-dipole transition probabilities,” Phys. Rev. 57, 225–234 (1940).
    [Crossref]
  13. F. S. Tompkins (private communication, 1979).
  14. C. M. Brown, S. G. Tilford, and M. L. Ginter, “Absorption spectrum of Zn i and Cd i in the 1300–1750 Å region,” J. Opt. Soc. Am. 65, 1404–1409 (1975).
    [Crossref]

1980 (1)

C. M. Brown and M. L. Ginter, “The absorption spectrum of CuH in the 2350 Å to 1890 Å region,” J. Mol. Spectrosc. 80, 145–157 (1980).
[Crossref]

1978 (2)

J. P. Connerade, M. A. Baig, M. W. D. Mansfield, and E. Radtke, “The absorption spectrum of Ag i in the vacuum ultraviolet,” Proc. R. Soc. London Ser. A 361, 379–398 (1978).
[Crossref]

C. M. Brown and M. L. Ginter, “Absorption spectrum of Au i between 1300 and 1900 Å,” J. Opt. Soc. Am. 68, 243–246 (1978).
[Crossref]

1977 (1)

1975 (1)

1973 (2)

1969 (1)

1948 (1)

A. G. Shenstone, “The first spectrum of copper (Cu i),” Phil. Trans. R. Soc. London Ser. A 241, 297–322 (1948).
[Crossref]

1940 (1)

G. H. Shortley, “The computation of quadrupole and magnetic-dipole transition probabilities,” Phys. Rev. 57, 225–234 (1940).
[Crossref]

Baig, M. A.

J. P. Connerade, M. A. Baig, M. W. D. Mansfield, and E. Radtke, “The absorption spectrum of Ag i in the vacuum ultraviolet,” Proc. R. Soc. London Ser. A 361, 379–398 (1978).
[Crossref]

Brown, C. M.

Connerade, J. P.

J. P. Connerade, M. A. Baig, M. W. D. Mansfield, and E. Radtke, “The absorption spectrum of Ag i in the vacuum ultraviolet,” Proc. R. Soc. London Ser. A 361, 379–398 (1978).
[Crossref]

Garstang, R. H.

R. H. Garstang, “Forbidden Transitions,” in Atomic and Molecular Processes, edited by D. R. Bates (Academic, New York, 1962), pp. 3–5.

Ginter, M. L.

Mansfield, M. W. D.

J. P. Connerade, M. A. Baig, M. W. D. Mansfield, and E. Radtke, “The absorption spectrum of Ag i in the vacuum ultraviolet,” Proc. R. Soc. London Ser. A 361, 379–398 (1978).
[Crossref]

Martin, W. C.

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Vol. II, Natl. Bur. Std., U.S. Circ. No. 467 (U.S. Government Printing Office, Washington, D.C., 1962), p. 112.

Naber, R. H.

Radtke, E.

J. P. Connerade, M. A. Baig, M. W. D. Mansfield, and E. Radtke, “The absorption spectrum of Ag i in the vacuum ultraviolet,” Proc. R. Soc. London Ser. A 361, 379–398 (1978).
[Crossref]

Shenstone, A. G.

A. G. Shenstone, “The first spectrum of copper (Cu i),” Phil. Trans. R. Soc. London Ser. A 241, 297–322 (1948).
[Crossref]

Shortley, G. H.

G. H. Shortley, “The computation of quadrupole and magnetic-dipole transition probabilities,” Phys. Rev. 57, 225–234 (1940).
[Crossref]

Sugar, J.

Tilford, S. G.

Tompkins, F. S.

F. S. Tompkins (private communication, 1979).

Tondello, G.

Appl. Opt. (1)

J. Mol. Spectrosc. (1)

C. M. Brown and M. L. Ginter, “The absorption spectrum of CuH in the 2350 Å to 1890 Å region,” J. Mol. Spectrosc. 80, 145–157 (1980).
[Crossref]

J. Opt. Soc. Am. (5)

Phil. Trans. R. Soc. London Ser. A (1)

A. G. Shenstone, “The first spectrum of copper (Cu i),” Phil. Trans. R. Soc. London Ser. A 241, 297–322 (1948).
[Crossref]

Phys. Rev. (1)

G. H. Shortley, “The computation of quadrupole and magnetic-dipole transition probabilities,” Phys. Rev. 57, 225–234 (1940).
[Crossref]

Proc. R. Soc. London Ser. A (1)

J. P. Connerade, M. A. Baig, M. W. D. Mansfield, and E. Radtke, “The absorption spectrum of Ag i in the vacuum ultraviolet,” Proc. R. Soc. London Ser. A 361, 379–398 (1978).
[Crossref]

Other (4)

C. E. Moore, Atomic Energy Levels, Vol. II, Natl. Bur. Std., U.S. Circ. No. 467 (U.S. Government Printing Office, Washington, D.C., 1962), p. 112.

In estimating the intensities, an effort was made to maintain a consistent scale over the wide ranges of wavelength, temperature, pressure, exposure time, and development time employed in this work. However, corrections for these variables were largely subjective. The intensity of a line was judged relative to the intensities of nearby lines. Consequently, intensities of lines whose wavelengths differ by more than ~50 Å are not necessarily comparable. Finally, the intensity scales for sharp lines and diffuse lines are not necessarily related.

R. H. Garstang, “Forbidden Transitions,” in Atomic and Molecular Processes, edited by D. R. Bates (Academic, New York, 1962), pp. 3–5.

F. S. Tompkins (private communication, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

FIG. 1
FIG. 1

Plots of the quantum defects for the ns2S1/2 and n p P 2 3 / 2 , 1 / 2 o series. For the 2S1/2 series, squares and circles represent data taken from Ref. 1 and Table I, respectively. For the P 2 3 / 2 , 1 / 2 o series, data for n = 4 were taken from Ref. 1 while all other points (stars, triangles, and circles for P 2 3 / 2 o , P 2 1 / 2 o, and 2P with J unresolved, respectively) are from the present work.

FIG. 2
FIG. 2

Densitometer trace of a plate in the region near the first ionization limit. Note the series of weak lines assigned (see text) to forbidden transitions. The horizontal scales give energy above the ground level (E) and principal quantum numbers (n) of the series.

Tables (2)

Tables Icon

TABLE II Energy levels calculated from transitions from m2D.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n * = ( n δ ) = [ R / [ E E n ] ] 1 / 2 ,